
KEEFE PROPERTY TRACT 2 & 3

Detention Calculations

LIBERTY WAY

WEST CHESTER TOWNSHIP, BUTLER COUNTY, OHIO

As-Built 03-16-17

PREPARED BY:

BAYER BECKER

6900 TYLERSVILLE ROAD

MASON, OHIO 45040

P (513) 336-6600

SUMMARY OF DATA

Method of Hydrograph Development: TR-55

Software: Autodesk Storm and Sanitary Stand Alone

Site Stormwater Summary

See Previous Keefe Detention Reports

Critical Storm = 50yr

Drainage Area Descriptions	Drainage Area	CN	Тс	Q1	Q1	Q10	Q50
Drainage Area Descriptions	(Acres)		(Mins)	(cfs)	(Cu. Ft.)	(cfs)	(cfs)
On-Site Pre-Dev Areas		/					
Previously Detained Areas	44.88	71.0	13.80	15.70		71.24Pg 6	123.57
16.4 + 4.3+18.3	+5.9 = 44.90 (rounding error)						
New Commercial	7.66	71.0	13.80	2.68 Pg	7 9,724	12.64	21.19
New Residential	5.23	71.0	13.80	1.83 Pg	8 6,647	8.63	14.44
On-Site Post Developed to Basin							
Weatherington Pointe Cabelas & Ou	tlots 18.30	94.0	12.00	37.48		73.47	100.72
Tylers Place Blvd to Pond	4.30	90.0	12.00	7.19		15.69	22.18
Keefe Tract 2 to Basin	5.90	94.0	12.00	12.08		24.15	32.49
Weatherington Residential	16.40	74.0	13.80	8.09		30.84	52.33
New Commerical	7.02	96.0	12.00	15.62	13 45,136	29.26	39.54
New Commencal	7.02	90.0	12.00	13.02	45,150	29.20	39.34
Off-Site Areas							
Golf Course	41.60	77.0	22.20	21.29		73.09	119.72
Liberty Way	6.50	90.0	11.00	10.87		23.73	33.53
Bypass Areas				Pg	14		
New Commerical	0.57	95.0	10.00	1.26	3.454	2.40	3.25
New Residential	5.21	81.0	12.00	5.02 _{Pg}	13,889	14.41	22.23
				. 9			

Allowable Release Rate=	
Q1 On-Site Pre Developed + Q10 Previously Detained +	223.27 CFS
Q50 Offsite	223.27 GFS

Note: CN for pre-developed conditions are based on previously developed and approved stormwater calculations for the Keefe Property.

These numbers were based on a composite of B and C soils with open space in fair condition

See Page 30 for routed flow rates

Storm Water Detention/Retention Summary

Date:	9/21/2016	Revised:	
Design By:	MJL	Revised:	
Checked By:	MJL	Revised:	3/16/2017

Project: Keefe Tract 2 File No.: 15M053-000

County: Butler City/Township: West Chester Twp

Basin Primary Basin

On-Site Area 29.32 Acres
Off-Site Area 41.60 Acres
Bypass Area 5.78 Acres

P	rimary Bas	sin
Orifice	Size	Inv Elev
Spillway	60'	862.54
1	16'	860.50
1	66" ø	854.43
1	6" ø	852.10

Primary Basin

Α	В	С	D	E	F	G	=F+G	=C+F+G	
Event	Inflow	Outflow	Elev	Storage	Com Byp	Res Byp	Bypass	Total	Allowable
Q_1	79.90	16.67	855.43	144,335	1.27	5.09	6.36	23.03	
Q_{10}	203.64	105.33	858.07	281,247	2.44	14.42	16.86	122.19	
Q_{50}	296.85	173.75	859.71	369,687	3.25	Pg 19 22.23P	g 21 25.48	199.23	223.27 Pg 30
Q_{100}	329.42	204.53	860.18	396,530	3.56F	^{Pg} 26 25.11 ^P	g 27 28.67	233.20	325.08 Pg 31

Basin Existing Pond

On-Site Area 4.30 Acres
Off-Site Area 0.00 Acres
Bypass Area 0.00 Acres

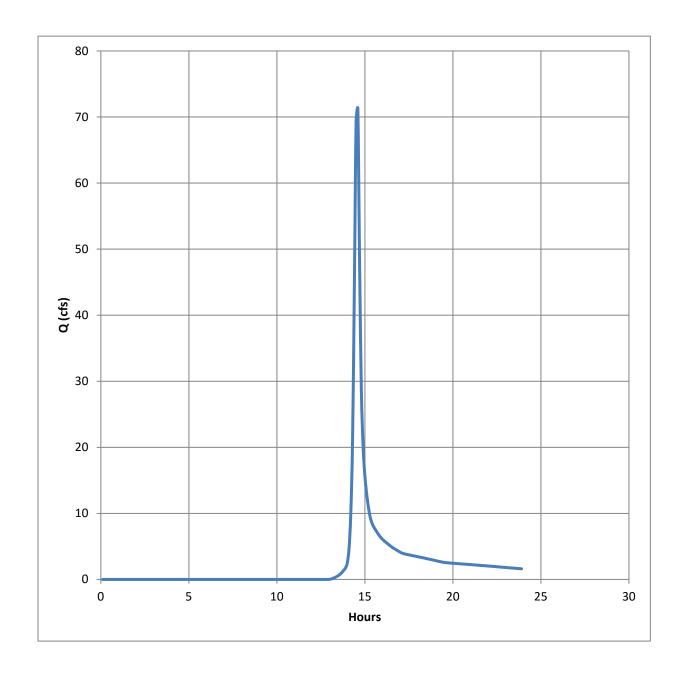
Existing Pond				
Orifice	Size	Inv Elev		
T/GR	8'	867.30		
Spillway	35'	866.80		
3	12"X36"	865.50		

Α	В	С	D	E
Event	Inflow	Outflow	Elev	Storage
Q_1	17.85	10.73	864.98	10,583
Q_{10}	52.24	36.79	865.67	26,321
Q_{50}	63.93	41.16	866.25	42,017
Q_{100}	67.81	42.67	866.53	49,766

Storm Water Detention/Retention Summary

Date:	9/9/2016	Revised:	<u></u>	
Design By:	MJL	Revised:		
Checked By:	:	Revised:		
Project:	Keefe Tract 2		File No.: 15M053-	000
County:	Butler		City/Township:	West Chester Twp

Basin Cabelas WQ Basin

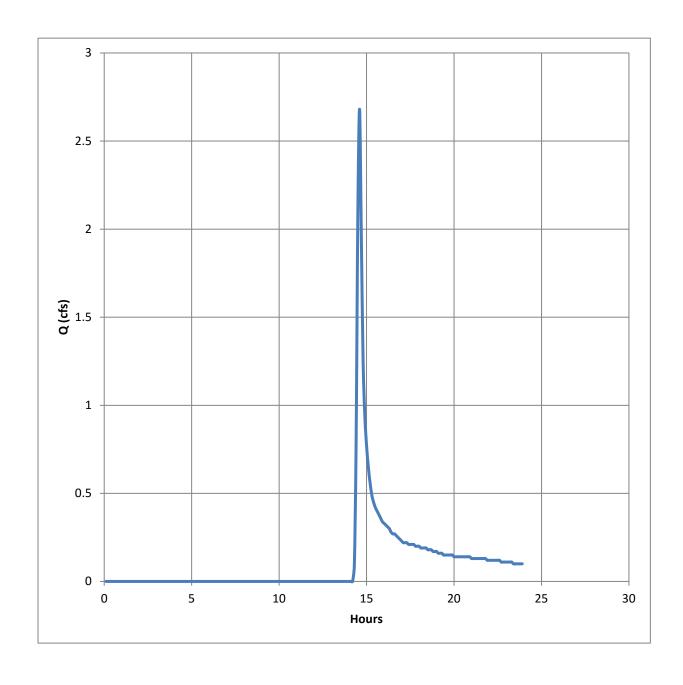

On-Site Area 18.30 Acres
Off-Site Area 6.50 Acres
Bypass Area 0.00 Acres

	Cabelas WO	Q
	~.	
Orifice	Size	Inv Elev
T/Dike		871.00
South	8'	869.17
North	16'	868.92
1	3.75" ø	866.97

Α	В	С	D	Ε
Event	Inflow	Outflow	Elev	Storage
Q_1	48.15	43.28	869.72	80,402
Q_{10}	97.12	84.16	870.48	91,769
Q_{50}	134.06	102.19	871.41	107,120
Q_{100}	146.85	108.61	871.84	114,387

Previously Detained Areas

Hydrograph Type SCS Runoff Type II Peak Discharge = 71.24 Storm Frequency Time to Peak = 14:36 10 yrs 216,358 Ft³ Time Interval 6 min Hyd. Volume = 71 Drainage Area 44.88 Acres Curve Number = Tc Method User Time of conc. (Tc) =13.80 Mins Total precip. 3.9 in Date = 6/2/2016 Storm Duration 24 hrs

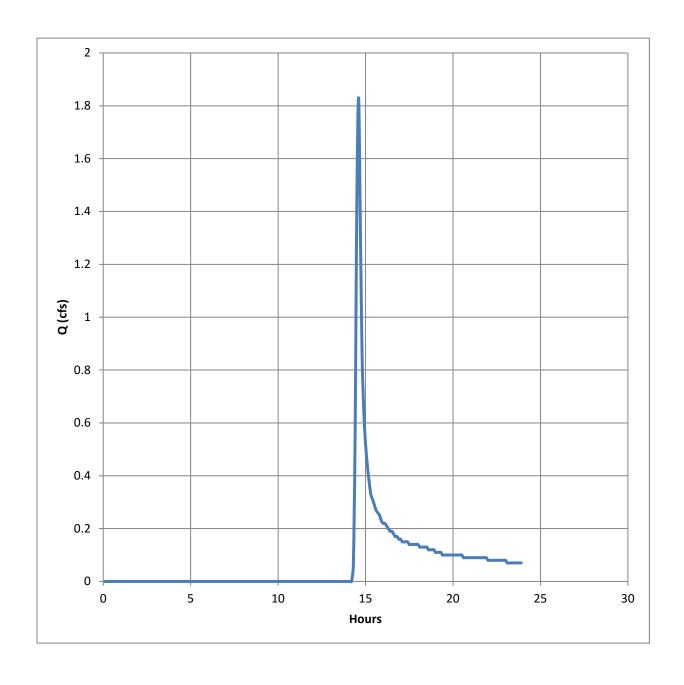


Predeveloped Commercial Areas

Hydrograph Type SCS Runoff Type II Peak Discharge = 2.68 Storm Frequency Time to Peak = 14:36 1 yrs 9,724 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 7.66 Acres Curve Number = 71

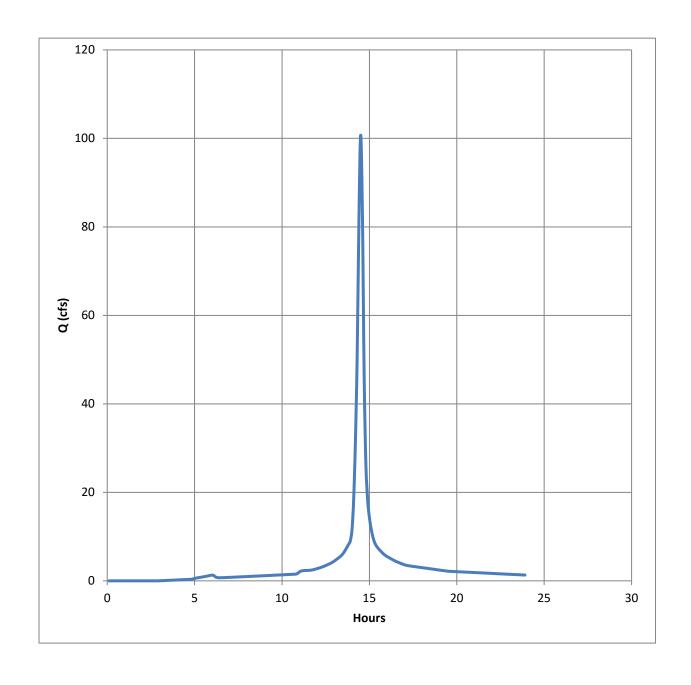
Tc Method = User Time of conc. (Tc) = 13.80 Mins

Total precip. = 2.4 in Date = 6/2/2016 Storm Duration = 24 hrs

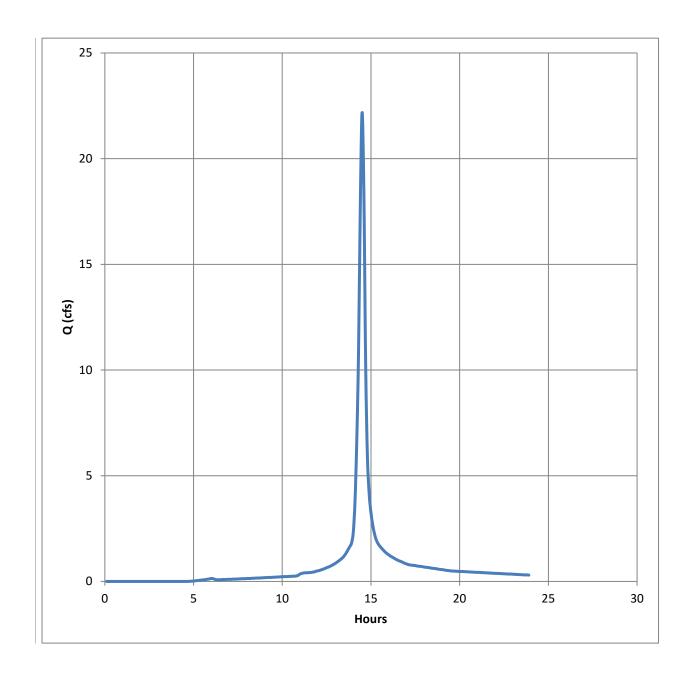

Predeveloped Residential Area

SCS Runoff Type II Hydrograph Type Peak Discharge = 1.83 Storm Frequency Time to Peak = 14:36 1 yrs 6,647 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 5.23 Acres Curve Number = 71

Drainage Area = 5.23 Acres Curve Number = 71

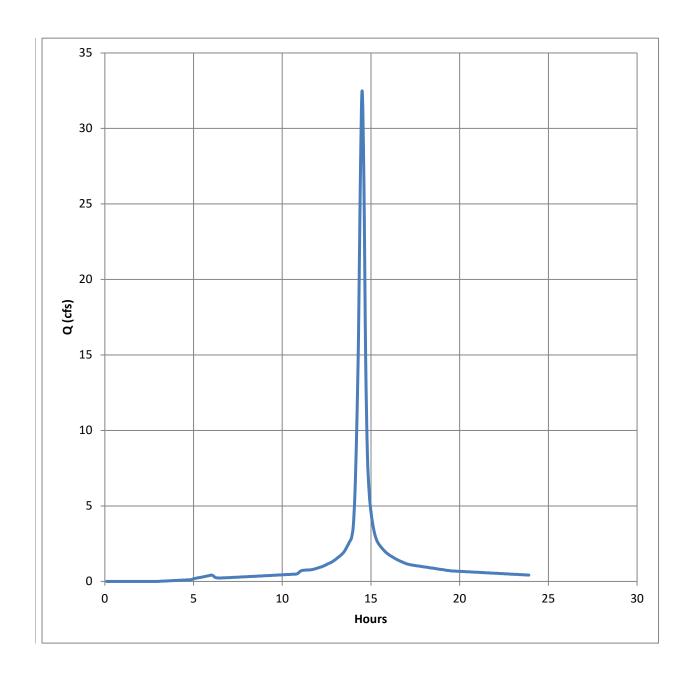

Tc Method = User Time of conc. (Tc) = 13.80 Mins Total precip. = 2.4 in Date = 6/2/2016

Storm Duration = 24 hrs

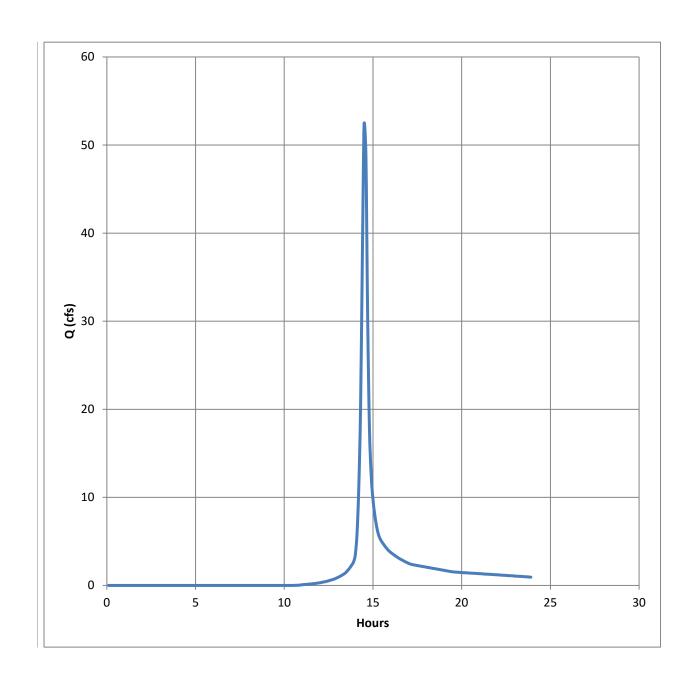

Weatherington Pointe Cabelas & Outlots

SCS Runoff Type II Hydrograph Type Peak Discharge = 100.72 Storm Frequency 14:30 50 yrs Time to Peak = 299,066 Ft³ Time Interval 6 min Hyd. Volume = 94 Drainage Area 18.30 Acres Curve Number = Tc Method User Time of conc. (Tc) =12.00 Mins Total precip. 5.2 in Date = 6/2/2016 Storm Duration 24 hrs

Tylers Place Blvd to Pond


Hydrograph Type SCS Runoff Type II Peak Discharge = 22.18 Storm Frequency Time to Peak = 14:30 50 yrs 63,568 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 4.30 Acres Curve Number = 90 Tc Method User Time of conc. (Tc) =12.00 Mins Total precip. 5.2 in Date = 6/2/2016 Storm Duration 24 hrs

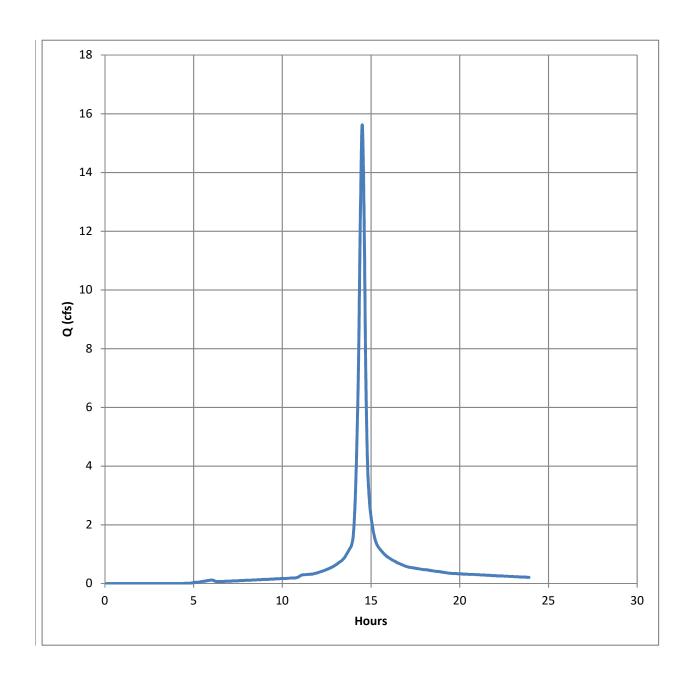
Keefe Tract 2 to Basin


Hydrograph Type SCS Runoff Type II Peak Discharge = 32.49 Storm Frequency Time to Peak = 14:30 50 yrs 96,465 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 5.90 Acres Curve Number = 94 Tc Method User Time of conc. (Tc) =12.00 Mins Total precip. 5.2 in Date = 6/2/2016

Storm Duration = 24 hrs

Weatherington Residential

Hydrograph Type SCS Runoff Type II Peak Discharge = 52.33 Storm Frequency 14:30 50 yrs Time to Peak = 150,217 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 16.40 Acres Curve Number = 74 Tc Method User Time of conc. (Tc) =13.80 Mins Total precip. 5.2 in Date = 6/2/2016 Storm Duration 24 hrs

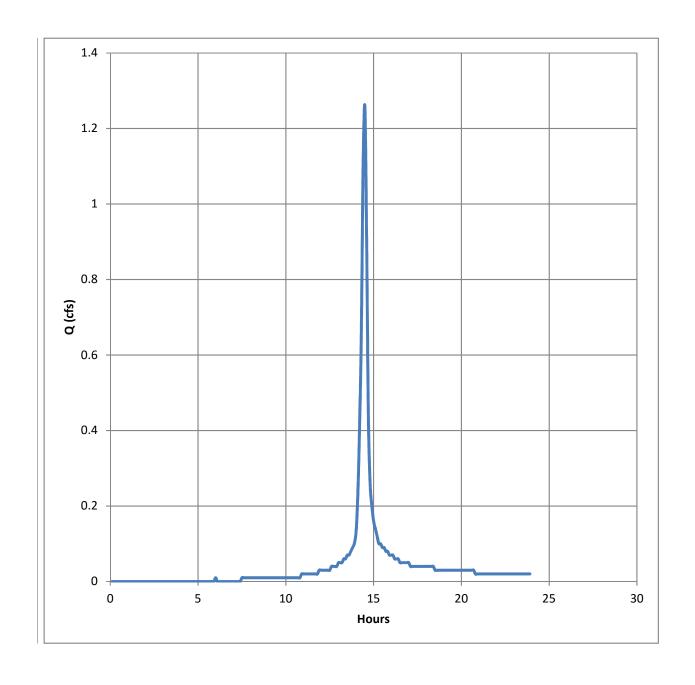

Postdeveloped New Commerical to Basin

Hydrograph Type SCS Runoff Type II Peak Discharge = 15.62 Storm Frequency Time to Peak = 14:30 1 yrs 45,136 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 6.86 Acres Curve Number = 96

Tc Method = User Time of conc. (Tc) = 12.00 Mins

Total precip. = 2.4 in Date = 9/8/2016

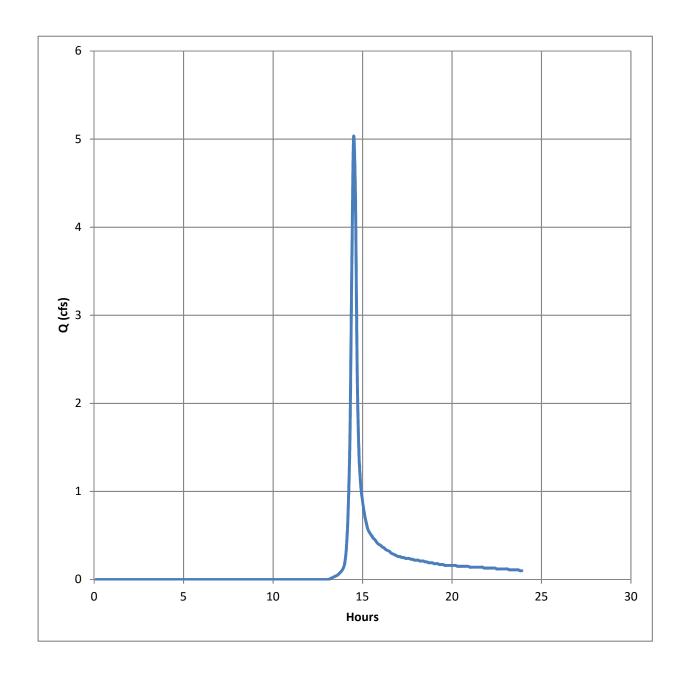
Storm Duration = 24 hrs



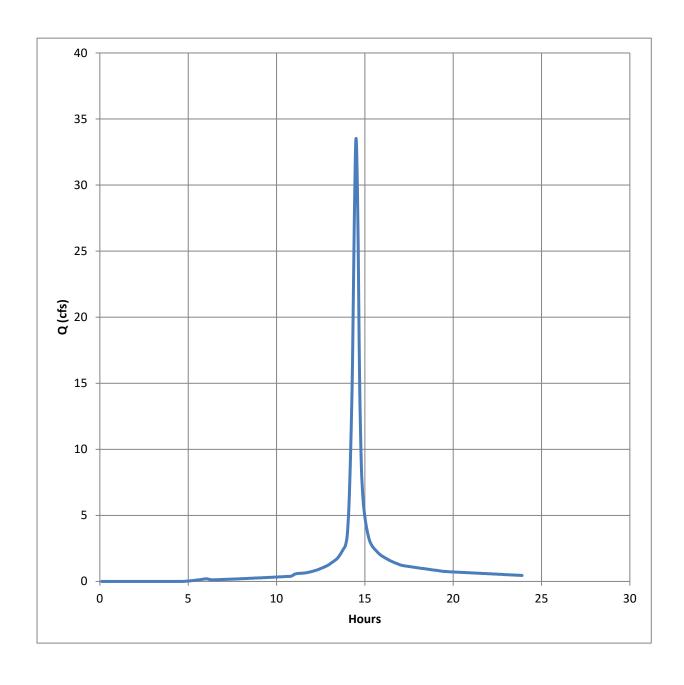
Postdeveloped New Commercial to Bypass

Hydrograph Type SCS Runoff Type II Peak Discharge = 1.26 Storm Frequency Time to Peak = 14:30 1 yrs 3.454 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 0.80 Acres Curve Number = 95

Tc Method = User Time of conc. (Tc) = 10.00 Mins

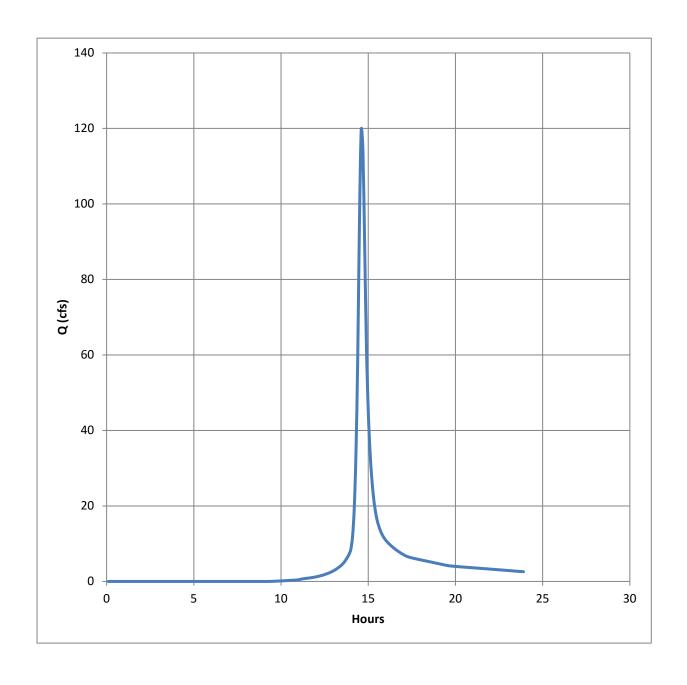

Total precip. = 2.4 in Date = 9/8/2016Storm Duration = 24 hrs

Postdeveloped New Residential


SCS Runoff Type II Hydrograph Type Peak Discharge = 5.02 Storm Frequency Time to Peak = 14:30 1 yrs 13,889 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 5.23 Acres Curve Number = 81

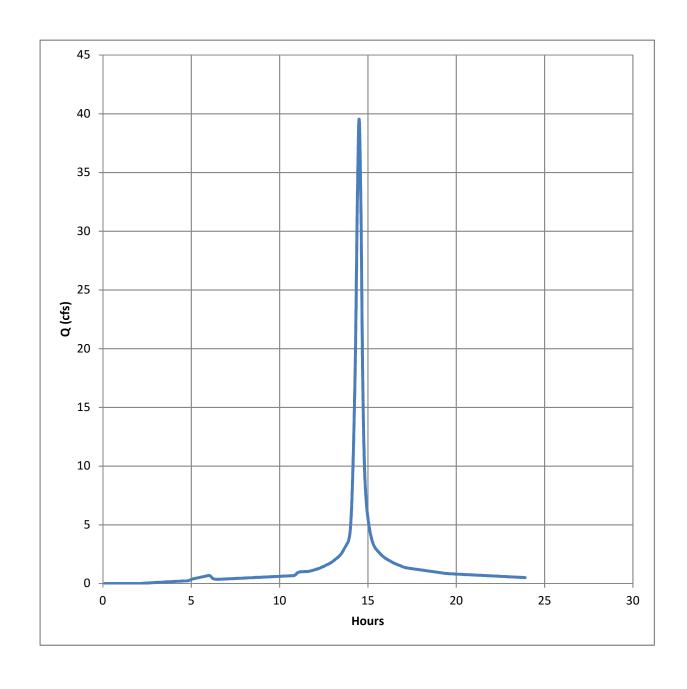
Tc Method = User Time of conc. (Tc) = 10.00 Mins Total precip. = 2.4 in Date = 9/8/2016 Storm Duration = 24 hrs

Liberty Way Off-Site


Hydrograph Type SCS Runoff Type II Peak Discharge = 33.53 Storm Frequency Time to Peak = 14:30 50 yrs 96,034 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 6.50 Acres Curve Number = 90 11.00 Mins Tc Method User Time of conc. (Tc) =Total precip. 5.20 in Date = 6/2/2016 Storm Duration 24 hrs

Golf Course - Off Site

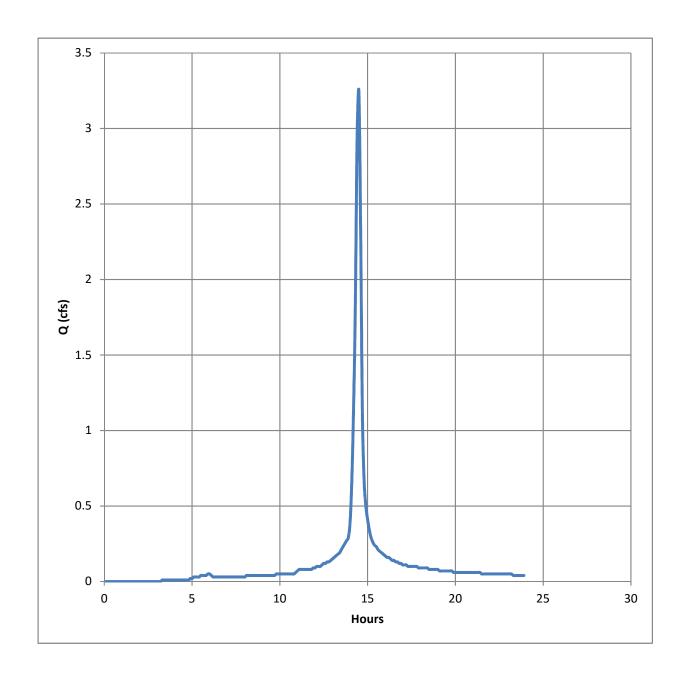
Hydrograph Type SCS Runoff Type II Peak Discharge = 119.72 Storm Frequency Time to Peak = 14:30 50 yrs 421,422 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 41.60 Acres Curve Number = 77 22.20 Mins Tc Method User Time of conc. (Tc) =Total precip. 5.2 in Date = 6/2/2016


Storm Duration = 24 hrs

Postdeveloped New Commercial

24 hrs

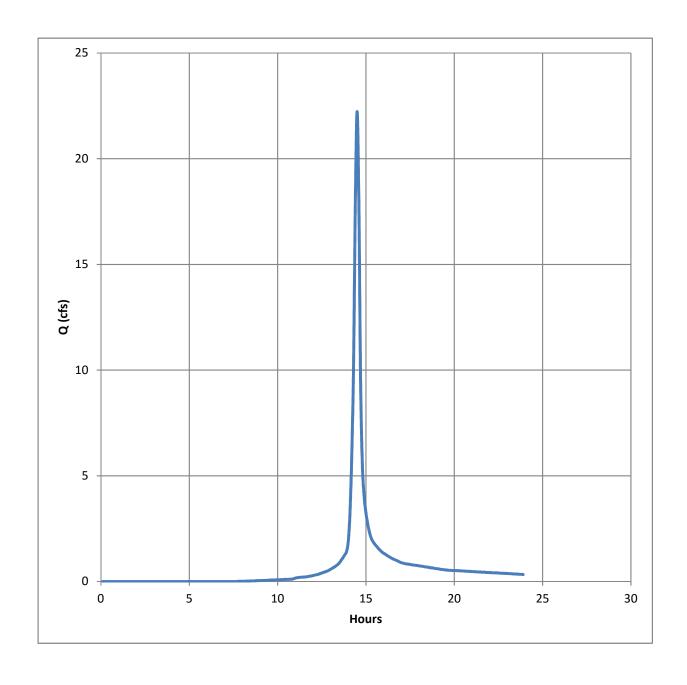
SCS Runoff Type II Hydrograph Type Peak Discharge = 39.54 Storm Frequency 50 yrs Time to Peak = 14:30 120,512 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 6.86 Acres Curve Number = 96 12.00 Mins Tc Method User Time of conc. (Tc) = Total precip. 5.2 in Date = 9/8/2016 Storm Duration



Postdeveloped New Commercial to Bypass

Hydrograph Type SCS Runoff Type II Peak Discharge = 3.25 Storm Frequency 50 yrs Time to Peak = 14:30 9,544 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 0.80 Acres Curve Number = 95

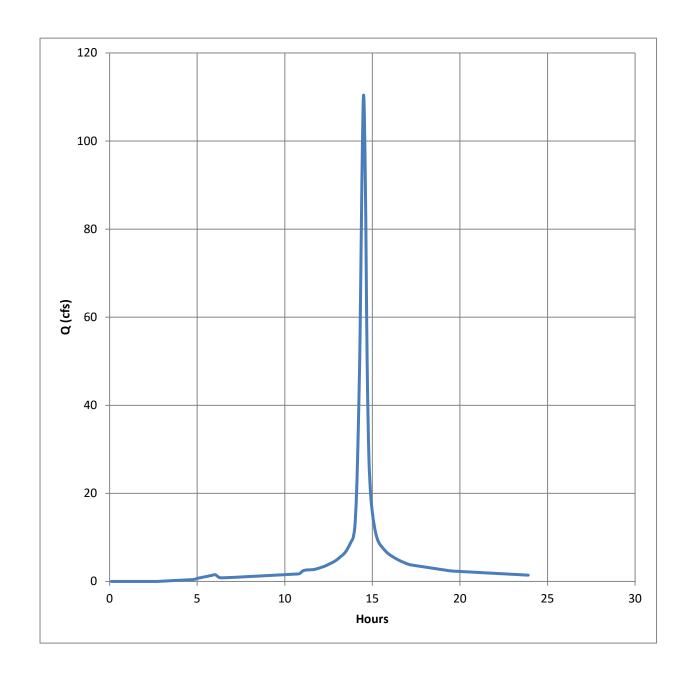
Tc Method = User Time of conc. (Tc) = 10.00 Mins


Total precip. = 5.2 in Date = 9/8/2016Storm Duration = 24 hrs

Postdeveloped New Residential

SCS Runoff Type II Hydrograph Type Peak Discharge = 22.23 Storm Frequency 50 yrs Time to Peak = 14:30 59,816 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 5.23 Acres Curve Number = 81 11.00 Mins Tc Method User Time of conc. (Tc) = Total precip. 5.2 in Date = 9/8/2016

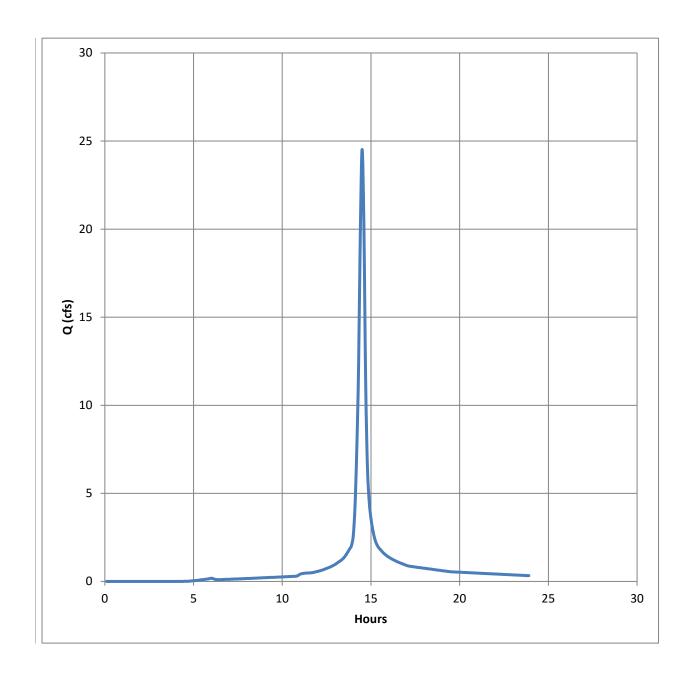
Storm Duration = 24 hrs


Weatherington Pointe Cabelas and Outlots

24 hrs

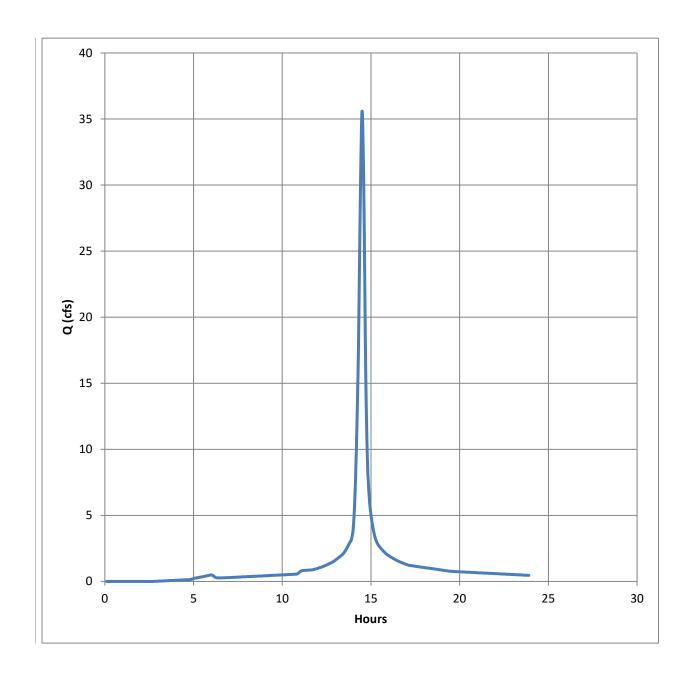
SCS Runoff Type II Hydrograph Type Peak Discharge = 110.43 Storm Frequency 100 yrs Time to Peak = 12:30 329,991 Ft³ Time Interval 6 min Hyd. Volume = 94 Drainage Area 18.30 Acres Curve Number = Tc Method User Time of conc. (Tc) =12.00 Mins Total precip. 5.67 in Date = 6/2/2016

Notes:


Storm Duration

Tylers Place Blvd to Pond

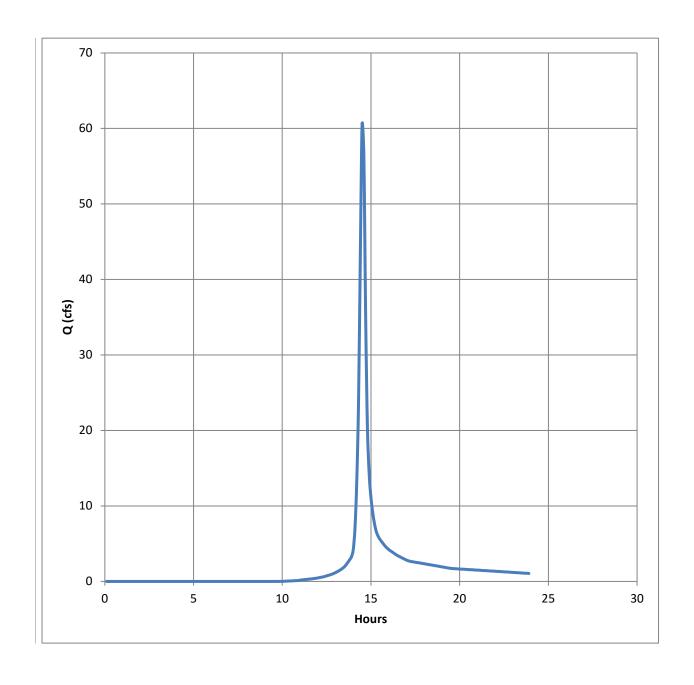
Hydrograph Type SCS Runoff Type II Peak Discharge = 24.52 Storm Frequency 12:30 100 yrs Time to Peak = 70,708 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area Curve Number = 90 4.30 Acres Tc Method User Time of conc. (Tc) =12.00 Mins Total precip. 5.67 in Date = 6/2/2016


Storm Duration = 24 hrs

Keefe Tract 2 to Basin

Hydrograph Type SCS Runoff Type II Peak Discharge = 35.6 Storm Frequency Time to Peak = 12:30 100 yrs 106,363 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area Curve Number = 94 5.90 Acres Tc Method User Time of conc. (Tc) =12.00 Mins Total precip. 5.67 in Date = 6/2/2016

Storm Duration = 24 hrs

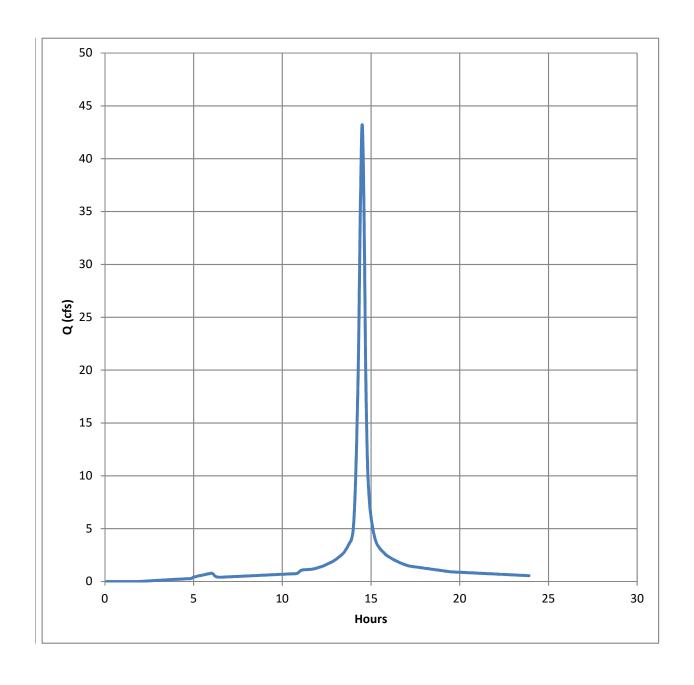


Weatherington Residential

Hydrograph Type SCS Runoff Type II Peak Discharge = 60.54 Storm Frequency Time to Peak = 12:30 100 yrs 173,243 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area Curve Number = 74 16.40 Acres

Tc Method = User Time of conc. (Tc) = 13.80 Mins

Total precip. = 5.67 in Date = 6/2/2016Storm Duration = 24 hrs

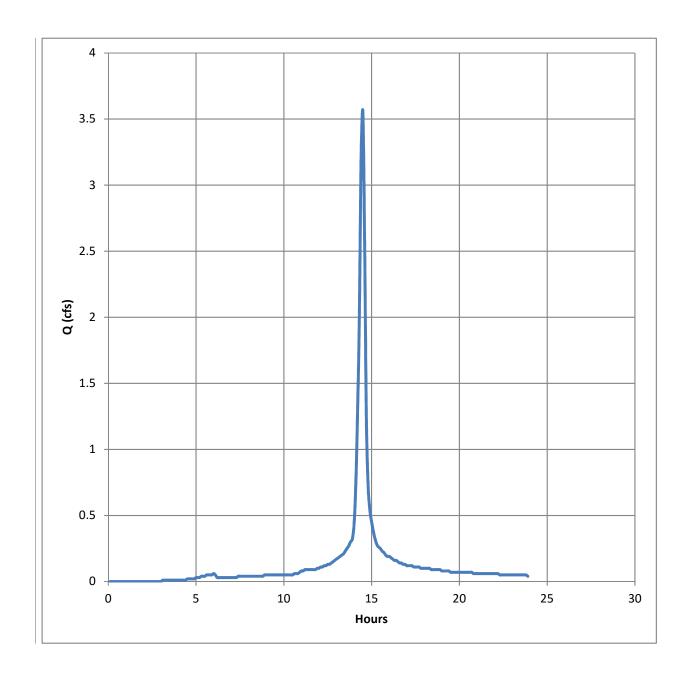

Postdeveloped New Commercial to Basin

Hydrograph Type SCS Runoff Type II Peak Discharge = 43.22 Storm Frequency Time to Peak = 12:30 100 yrs 132,674 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area Curve Number = 96 6.86 Acres

 Tc Method
 =
 User
 Time of conc. (Tc) =
 13.80 Mins

 Total precip.
 =
 5.67 in
 Date =
 9/8/2016

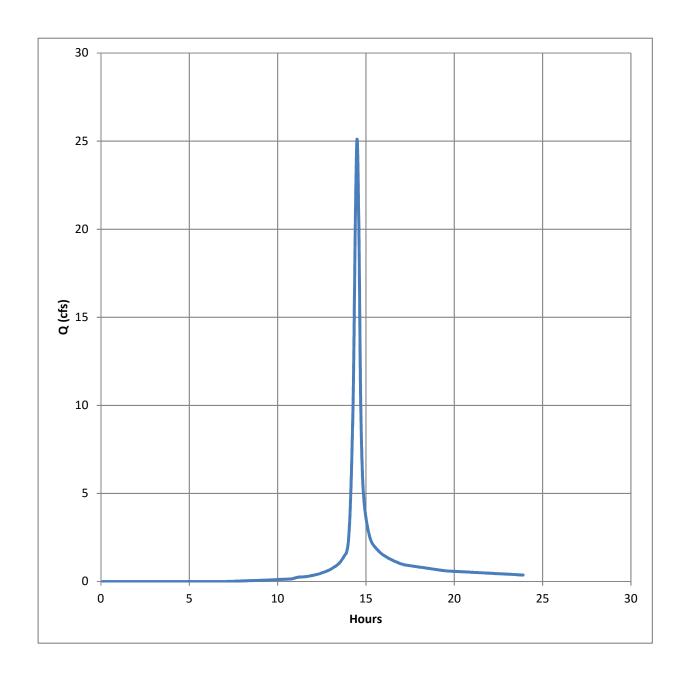
 Storm Duration
 =
 24 hrs



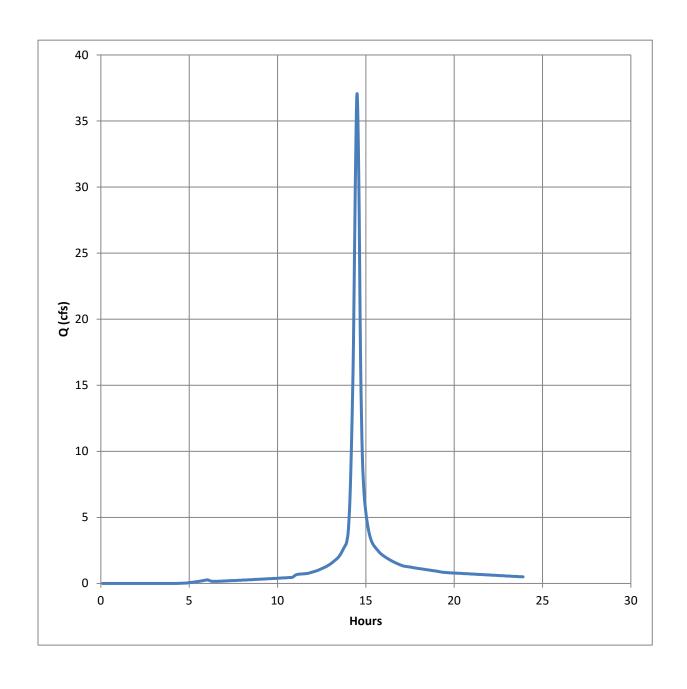
Postdeveloped New Commercial to Bypass

Hydrograph Type SCS Runoff Type II Peak Discharge = 3.56 Storm Frequency Time to Peak = 12:30 100 yrs 10,517 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 0.80 Acres Curve Number = 95 10.00 Mins Tc Method User Time of conc. (Tc) = Date = 9/8/2016

Total precip. 5.67 in


Storm Duration 24 hrs

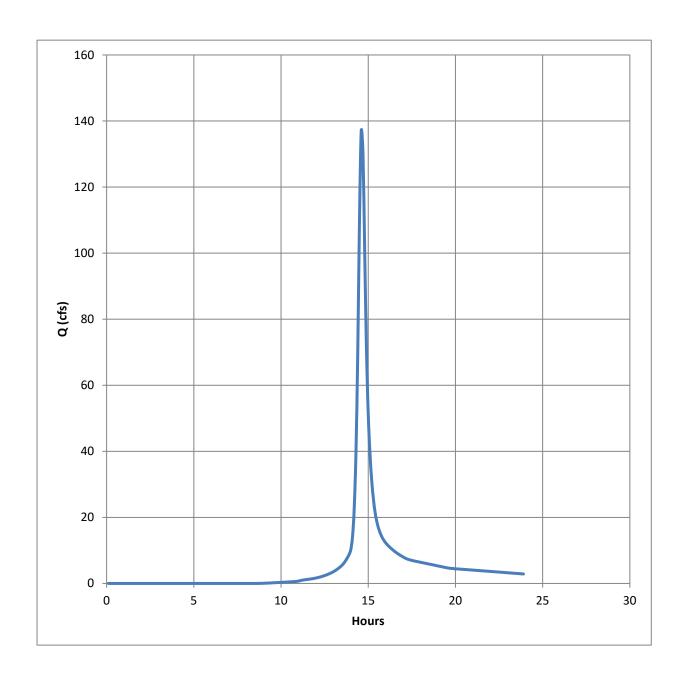
Postdeveloped New Residential


SCS Runoff Type II Hydrograph Type Peak Discharge = 25.11 Storm Frequency Time to Peak = 12:30 100 yrs 67,792 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 5.23 Acres Curve Number = 81 10.00 Mins Tc Method User Time of conc. (Tc) = Total precip. 5.67 in Date = 9/8/2016

Storm Duration = 24 hrs

Liberty Way Off-Site

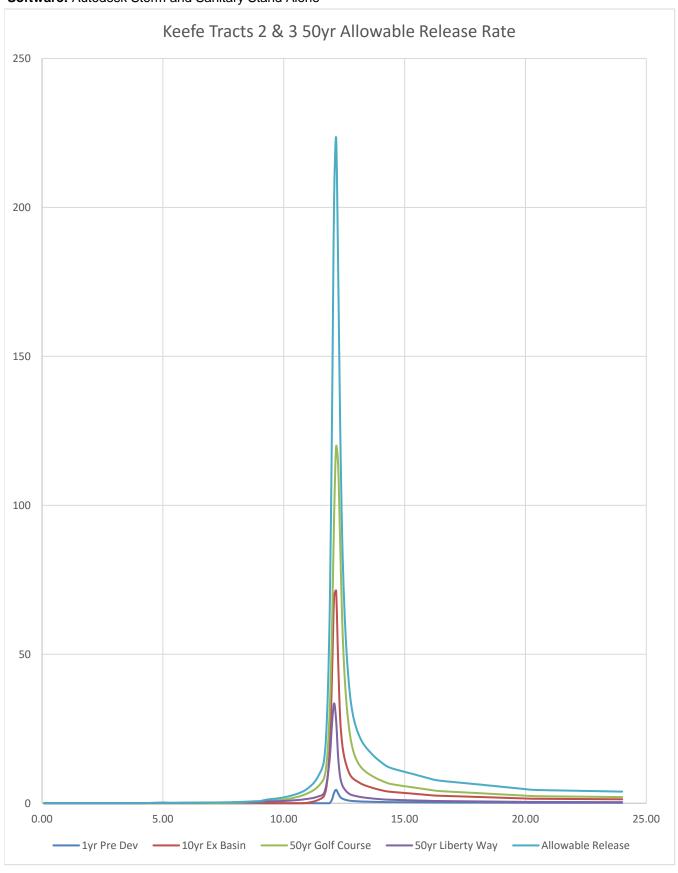
Hydrograph Type SCS Runoff Type II Peak Discharge = 37.07 Storm Frequency Time to Peak = 12:30 100 yrs 106,730 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area 6.50 Acres Curve Number = 90 11.00 Mins Tc Method User Time of conc. (Tc) =Total precip. 5.67 in Date = 6/2/2016 Storm Duration 24 hrs



Golf Course - Off Site

Hydrograph Type SCS Runoff Type II Peak Discharge = 137.07 Storm Frequency Time to Peak = 12:30 100 yrs 482,093 Ft³ Time Interval 6 min Hyd. Volume = Drainage Area Curve Number = 77 41.60 Acres

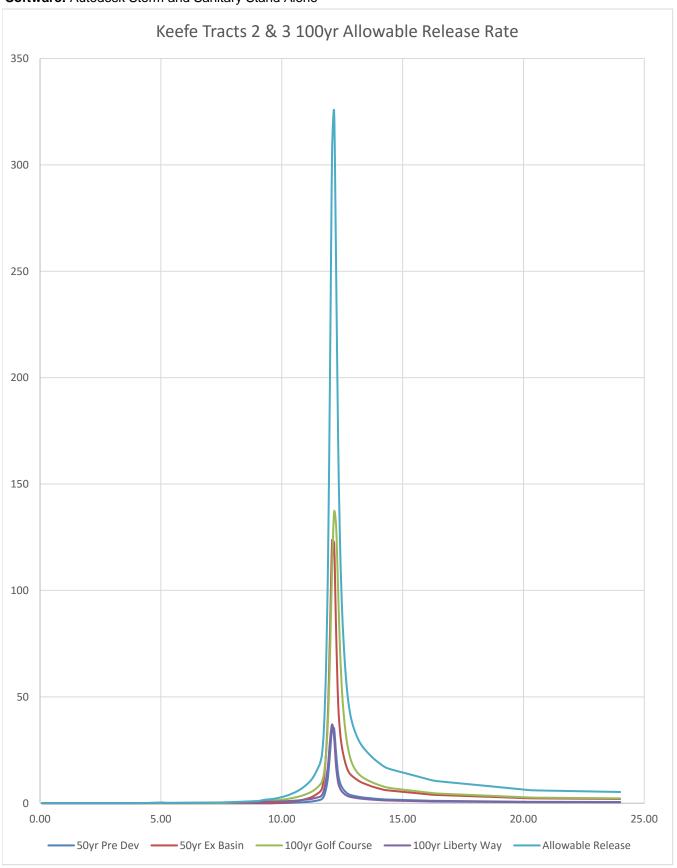
Tc Method = User Time of conc. (Tc) = 22.20 Mins


Total precip. = 5.67 in Date = 6/2/2016Storm Duration = 24 hrs

Allowable Release Rate Hydrograph

Method of Hydrograph Development: TR-55

Software: Autodesk Storm and Sanitary Stand Alone


Peak

1yr Pre Dev 10yr Ex Basin 4.51 cfs Pg7 + Pg8 71.24 cfs Pg 6 50yr Golf 50yr Lib Way 50yr Allowable 119.72 cfs ^{Pg} 16 33.53 cfs ^{Pg} 17 223.27 cfs

Allowable Release Rate Hydrograph

Method of Hydrograph Development: TR-55

Software: Autodesk Storm and Sanitary Stand Alone

Peak

50yr Pre Dev 35.63 cfs 50yr Ex Basin 123.57 cfs

 100yr Golf
 137.07 cfs

 100yr Lib Way
 37.07 cfs

 100yr Allowab
 325.08 cfs

Water Quality Volume

Project:	Keefe Tracts 2 & 3	Designed By:	MJL	Date:	9/13/16
Job No.:	15M053-000	Checked By:	ASB	Date:	3/16/17
Basin ID:	Primary Basin	Revised By:		Date:	

Required Water Quality Volume

$WQ_v = P C A/12$	WQ.,	=	Р (CA	V1	2
-------------------	------	---	-----	----	----	---

Site Drainage Area (A) =	81.56 acres
Rainfall Depth (P) =	0.75 in.
Runoff Coefficient (C) =	0.46
Residential Area (A) =	<u>16.40</u> acres
Residential (C) =	<u>0.40</u> acres
Commercial Area (A) =	23.56 acres
Commerical (C) =	0.80 acres
Golf Course Area (A) =	41.60 acres

0.30 acres

(To Basin)

WQ_v =

2.368 acre-ft. 103,150 cu.ft.

75% Wet Pond

1.78 acre-ft. 77,363 cu.ft.

Water Quality Release Rate

 $Q_{wqv} = Total WQ_v/RT$

Retention Time (RT) =

Provided Retention Time =

24 hours

cfs

Q_{wqv} =

33.92 Hours

0.90

Water Quality Outlet Orifice

Golf Course (C) =

Contour Areas	Elevation	Area	Volume	Cum. Vol.	Elevation	Storage
	ft	ft ²	ft ³	ft ³	at V	at Elev
Basin In	/. = 844.00	8608.90	0.00	0.00		
Contour	1 = 845.00	10164.05	9386.48	9386.48		
Contour	2 = 846.00	11827.50	10995.78	20382.25		
Contour	3 = 847.00	13596.40	12711.95			
Contour	4 = 848.00	15472.65	14534.53	47628.73		
Contour		17455.30	16463.98			
Contour	6 = 850.00	19545.30	18500.30	82593.00	849.72	
Contour	7 = 851.00	29644.75	24595.03	107188.03		
Contour	8 = 852.00	44649.05	37146.90	144334.93		
Contour	9 = 852.50	47003.00	57485.81	0.00		
Contour		48279.00			\sim	XX
Contour		49398.00				
Contour		50343.00			854.09	109345.58
Contour		51255.00			7	
Contour		52205.00				
Contour		53176.00			\mathcal{A}_{1}	
Contour		54341.00			\rightarrow	كتكر
Contour		55910.00				7
Contour		55910.00			/ /	
Contour		55910.00				
Contour		55910.00				
$Q = N C_d A_o (2 g \Delta h)^{1/2}$				/ /		
C _d =	0.61		/			
				. /		
$A_0 = \pi L$	² /4 for circular orific		r rectangular ori	rices		
g =	32.20 f	t/sec ²				
$Q = Q_{wq}$	= 0.895	#s				
equired Volume = V =	77363 f	,	Numh	er of orifices = N =	_	1
levation at V =	854.09	\mathcal{C}	Num	iei oi oiliices – iv	_	<u> </u>
Orifice h	= 6.000 ii		Orifice w =	0.00	inch (= 0 for	circular orifice)
h _{min} avg = (Elev at V - Ba			4.80		111011 (= 0 101	circular office,
				-		
$h_{trial} = Q/(N C_d / 2 g \sqrt{h_{mi}})$	1 ¹²) = /	12.03	in²	Actual $A = A_o =$	28.27 ir	n ⁴
$h^{avg} = (Q/(N C_d A_o))^2/(2$	g) = '	0.87	ft			
	1.74 > Elevation a		854.09	Good		
torage 10934		λ ν <i>–</i> Q =	0.895	-		
10934	1.30 11 T	. –	0.093	UI3		
\sim \sim .	\searrow					
\ \						

Keefe Tracts 2 & 3

Water Quality Volume

Project:	Keefe Tracts 2 & 3	3		Designed By:	MJL	Date:	6/2/16
Job No.:	15M053-000			Checked By:		Date:	
Basin ID:	Residential			Revised By:		Date:	
Requir	red Water Qua	ality Volume					
Site Drain	age Area (A) =	5.23 acres	(To Basin)		$WQ_v =$	0.119 acre-ft.	
Rainfall D	epth (P) =	0.75 in.				5,180 cu.ft.	
Imperviou	s Area =	2.81 acres					
	i=	0.54			20% Sediment	1,036 cu.ft.	
					Total WQ=	6,215 cu.ft.	
Runoff Co	pefficient (C) =	0.36					
C = 0.858	$i^3 - 0.78i^2 + 0.774i + 0.774i$	0.04					

Residential Water Quality Volume and Release Rates will be provided per each building in underground storage at building permits

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5 $\,$

Tuesday, 07 / 26 / 2016

Pond No. 2 - Existing Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 853.10 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	853.10	00	0	0
0.90	854.00	109	33	33
1.90	855.00	8,505	3,192	3,225
2.90	856.00	20,179	13,927	17,151
3.90	857.00	34,118	26,843	43,994
4.90	858.00	48,025	40,870	84,864
5.90	859.00	61,936	54,828	139,692
6.90	860.00	71,234	66,524	206,216
7.90	861.00	74,999	73,101	279,317

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 60.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 60.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 853.10	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 92.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .024	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Wet area))	
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	853.10	0.00										0.000
0.09	3	853.19	0.08 oc										0.077
0.18	7	853.28	0.33 ic										0.329
0.27	10	853.37	0.73 ic										0.731
0.36	13	853.46	1.29 ic										1.288
0.45	16	853.55	2.01 ic										2.015
0.54	20	853.64	2.87 ic										2.875
0.63	23	853.73	3.90 ic										3.896
0.72	26	853.82	5.04 ic										5.041
0.81	29	853.91	6.35 ic										6.346
0.90	33	854.00	7.77 ic										7.768
1.00	352	854.10	9.55 ic										9.547
1.10	671	854.20	11.46 ic										11.46
1.20	990	854.30	13.52 ic										13.52
1.30	1,309	854.40	15.79 ic										15.79
1.40	1,629	854.50	18.13 ic										18.13
1.50	1,948	854.60	20.66 ic										20.66
1.60	2,267	854.70	23.11 oc										23.11
1.70	2,586	854.80	25.54 oc										25.54
1.80	2,905	854.90	28.07 oc										28.07
1.90	3,225	855.00	30.58 oc										30.58
2.00	4,617	855.10	33.15 oc										33.15
2.10	6,010	855.20	35.79 oc										35.79
2.20	7,403	855.30	38.47 oc										38.47
2.30	8,795	855.40	41.09 oc										41.09
2.40	10,188	855.50	43.83 oc										43.83
2.50	11,581	855.60	46.49 oc										46.49
2.60	12,973	855.70	49.25 oc										49.25
2.70	14,366	855.80	51.91 oc										51.91
2.80	15,759	855.90	54.65 oc										54.65
2.90	17,151	856.00	57.37 oc										57.37
3.00	19,836	856.10	60.04 oc										60.04
3.10	22,520	856.20	62.67 oc										62.67
3.20	25,204	856.30	65.24 oc										65.24

Continues on next page...

Existing Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIV A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.30	27.888	856.40	67.84 oc										67.84
3.40	30,573	856.50	70.35 oc										70.35
3.50	33,257	856.60	72.77 oc										72.77
3.60	35,941	856.70	75.26 oc										75.26
3.70	38,625	856.80	77.54 oc										77.54
3.80	41,310	856.90	79.84 oc										79.84
3.90	43,994	857.00	81.99 oc										81.99
4.00	48,081	857.10	84.04 oc										84.04
4.10	52,168	857.20	86.03 oc										86.03
4.20	56,255	857.30	87.87 oc										87.87
4.30	60,342	857.40	89.53 oc										89.53
4.40	64,429	857.50	91.07 oc										91.07
4.50	68,516	857.60	92.42 oc										92.42
4.60	72,603	857.70	93.53 oc										93.53
4.70	76,690	857.80	94.39 oc										94.39
4.80	80,777	857.90	94.90 oc										94.90
4.90	84,864	858.00	94.87 oc										94.87
5.00	90,347	858.10	92.96 oc										92.96
5.10	95,829	858.20	97.89 oc										97.89
5.20	101,312	858.30	102.57 oc										102.57
5.30	106,795	858.40	107.05 oc										107.05
5.40	112,278	858.50	111.35 oc										111.35
5.50	117,760	858.60	115.49 oc										115.49
5.60	123,243	858.70	119.49 oc										119.49
5.70	128,726	858.80	123.36 oc										123.36
5.80	134,209	858.90	127.11 oc										127.11
5.90	139,692	859.00	130.76 oc										130.76
6.00	146,344	859.10	134.30 oc										134.30
6.10	152,996	859.20	137.75 oc										137.75
6.20	159,649	859.30	141.12 oc										141.12
6.30	166,301	859.40	144.41 oc										144.41
6.40	172,954	859.50	147.62 oc										147.62
6.50	179,606	859.60	150.77 oc										150.77
6.60	186,258	859.70	153.85 oc										153.85
6.70	192,911	859.80	156.88 oc										156.88
6.80	199,563	859.90	159.84 oc										159.84
6.90	206,216	860.00	162.76 oc										162.76
7.00	213,526	860.10	165.62 oc										165.62
7.10	220,836	860.20	168.43 oc										168.43
7.20	228,146	860.30	171.20 oc										171.20
7.30	235,456	860.40	173.92 oc										173.92
7.40	242,766	860.50	176.60 oc										176.60
7.50	250,076	860.60	179.24 oc										179.24
7.60	257,386	860.70	181.84 oc										181.84
7.70	264,697	860.80	184.40 oc										184.40
7.80	272,007	860.90	186.93 oc										186.93
7.90	279,317	861.00	189.43 oc										189.43

...End

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Thursday, 03 / 16 / 2017

Pond No. 1 - Walled Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 852.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	852.50	47,003	0	0
0.50	853.00	48,279	23,817	23,817
1.50	854.00	49,398	48,833	72,650
2.50	855.00	50,343	49,865	122,515
3.50	856.00	51,255	50,793	173,308
4.50	857.00	52,205	51,724	225,032
5.50	858.00	53,176	52,685	277,717
6.50	859.00	54,341	53,752	331,469
7.50	860.00	55,910	55,118	386,587
8.50	861.00	55,910	55,904	442,491
9.50	862.00	55,910	55,904	498,396
10.50	863.00	55,910	55,904	554,300

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	6.00	66.00	0.00	Crest Len (ft)	= 16.00	60.00	0.00	0.00
Span (in)	= 96.00	6.00	66.00	0.00	Crest El. (ft)	= 860.50	862.54	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 852.10	852.10	854.43	0.00	Weir Type	= 1	Broad		
Length (ft)	= 277.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.26	0.00	0.00	n/a					
N-Value	= .015	.015	.015	n/a					
Orifice Coeff.	= 0.61	0.61	0.61	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage	/ Discharge	Tab	le
-----------------	-------------	-----	----

Stage	Storage cuft	Elevation ft	Clv A	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
ft	cuit	IL	cfs	CIS	CIS	CIS	CIS	CIS	CIS	CIS	CIS	CIS	CIS
0.00	0	852.50	0.00	0.00	0.00		0.00	0.00					0.000
0.05	2,382	852.55	7.05 ic	0.21 ic	0.00		0.00	0.00					0.206
0.10	4,763	852.60	7.05 ic	0.31 ic	0.00		0.00	0.00					0.306
0.15	7,145	852.65	7.05 ic	0.37 ic	0.00		0.00	0.00					0.375
0.20	9,527	852.70	7.05 ic	0.43 ic	0.00		0.00	0.00					0.433
0.25	11,909	852.75	7.05 ic	0.48 ic	0.00		0.00	0.00					0.484
0.30	14,290	852.80	7.05 ic	0.53 ic	0.00		0.00	0.00					0.530
0.35	16,672	852.85	7.05 ic	0.57 ic	0.00		0.00	0.00					0.572
0.40	19,054	852.90	7.05 ic	0.61 ic	0.00		0.00	0.00					0.612
0.45	21,436	852.95	7.05 ic	0.65 ic	0.00		0.00	0.00					0.649
0.50	23,817	853.00	7.05 ic	0.68 ic	0.00		0.00	0.00					0.684
0.60	28,701	853.10	7.05 ic	0.75 ic	0.00		0.00	0.00					0.749
0.70	33,584	853.20	7.05 ic	0.81 ic	0.00		0.00	0.00					0.809
0.80	38,467	853.30	7.05 ic	0.87 ic	0.00		0.00	0.00					0.865
0.90	43,350	853.40	7.05 ic	0.92 ic	0.00		0.00	0.00					0.918
1.00	48,234	853.50	7.05 ic	0.97 ic	0.00		0.00	0.00					0.967
1.10	53,117	853.60	7.05 ic	1.01 ic	0.00		0.00	0.00					1.015
1.20	58,000	853.70	7.05 ic	1.06 ic	0.00		0.00	0.00					1.060
1.30	62,883	853.80	7.05 ic	1.10 ic	0.00		0.00	0.00					1.103
1.40	67,767	853.90	7.05 ic	1.14 ic	0.00		0.00	0.00					1.145
1.50	72,650	854.00	7.05 ic	1.18 ic	0.00		0.00	0.00					1.185
1.60	77,636	854.10	7.05 ic	1.22 ic	0.00		0.00	0.00					1.224
1.70	82,623	854.20	7.05 ic	1.26 ic	0.00		0.00	0.00					1.261
1.80	87,609	854.30	7.05 ic	1.30 ic	0.00		0.00	0.00					1.298
1.90	92,596	854.40	7.05 ic	1.33 ic	0.00		0.00	0.00					1.333
2.00	97,582	854.50	7.05 ic	1.37 ic	0.06 ic		0.00	0.00					1.428
2.10	102,569	854.60	7.05 ic	1.40 ic	0.33 ic		0.00	0.00					1.734
2.20	107,555	854.70	7.05 ic	1.43 ic	0.83 ic		0.00	0.00					2.262
2.30	112,542	854.80	7.05 ic	1.47 ic	1.54 ic		0.00	0.00					3.004
2.40	117,528	854.90	7.05 ic	1.50 ic	2.38 ic		0.00	0.00					3.883
2.50	122,515	855.00	7.05 ic	1.53 ic	3.49 ic		0.00	0.00					5.020
	•										C4:		4

Continues on next page...

Stage / Storage / Discharge Table

Stage	Storage /	Discharge	I able										
Stage	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
2.60	121,975	855.10	5.31 ic	1.48 ic	3.83 ic		0.00	0.00					5.309
2.70	121,973	855.20	6.82 ic	1.46 ic	5.30 ic		0.00	0.00					6.816
2.80	131,729	855.30	8.27 ic	1.54 ic	6.73 ic		0.00	0.00					8.270
2.90	136,606	855.40	10.38 ic	1.57 ic	8.80 ic		0.00	0.00					10.38
3.00	141,482	855.50	12.33 ic	1.60 ic	10.73 ic		0.00	0.00					12.33
3.10	146,359	855.60	14.51 ic	1.61 ic	12.90 ic		0.00	0.00					14.51
3.20	151,236	855.70	16.31 ic	1.62 ic	14.69 ic		0.00	0.00					16.31
3.30	156.113	855.80	18.92 ic	1.63 ic	17.29 ic		0.00	0.00					18.92
3.40	160,990	855.90	21.78 ic	1.64 ic	20.14 ic		0.00	0.00					21.77
3.50	165,867	856.00	24.08 ic	1.65 ic	22.43 ic		0.00	0.00					24.08
3.60	170,852	856.10	27.37 ic	1.65 ic	25.72 ic		0.00	0.00					27.37
3.70	175,837	856.20	30.92 ic	1.66 ic	29.25 ic		0.00	0.00					30.91
3.80	180,822	856.30	33.71 ic	1.67 ic	32.05 ic		0.00	0.00					33.71
3.90	185,807	856.40	36.65 ic	1.68 ic	34.97 ic		0.00	0.00					36.64
4.00	190,792	856.50	40.78 ic	1.68 ic	39.10 ic		0.00	0.00					40.78
4.10	195,777	856.60	44.01 ic	1.69 ic	42.31 ic		0.00	0.00					44.00
4.20	200,762	856.70	48.52 ic	1.69 ic	46.83 ic		0.00	0.00					48.52
4.30	205,748	856.80	52.02 ic	1.70 ic	50.32 ic		0.00	0.00					52.02
4.40	210,733	856.90	55.63 ic	1.71 ic	53.91 ic		0.00	0.00					55.62
4.50	215,718	857.00	60.63 ic	1.71 ic	58.91 ic		0.00	0.00					60.62
4.60	220,814	857.10	64.46 ic	1.72 ic	62.74 ic		0.00	0.00					64.46
4.70	225,909	857.20	68.38 ic	1.73 ic	66.65 ic		0.00	0.00					68.38
4.80	231,005	857.30	73.76 ic	1.73 ic	72.02 ic		0.00	0.00					73.75
4.90	236,101	857.40	77.85 ic	1.74 ic	76.11 ic		0.00	0.00					77.85
5.00	241,196	857.50	82.01 ic	1.75 ic	80.26 ic		0.00	0.00					82.01
5.10	246,292	857.60	87.65 oc	1.75 ic	85.90 ic		0.00	0.00					87.65
5.20	251,388	857.70	91.92 oc	1.75 ic	90.16 ic		0.00	0.00					91.91
5.30	256,484	857.80	96.22 oc	1.76 ic	94.46 ic		0.00	0.00					96.22
5.40	261,579	857.90	101.98 oc	1.75 ic	100.23 ic		0.00	0.00					101.98
5.50	266,675	858.00	106.33 oc	1.76 ic	104.58 ic		0.00	0.00					106.33
5.60	271,886	858.10	112.10 oc	1.75 ic	110.34 ic		0.00	0.00					112.09
5.70	277,098	858.20	116.44 oc	1.76 ic	114.68 ic		0.00	0.00					116.44
5.80	282,309	858.30	120.78 oc	1.76 ic	119.01 ic		0.00	0.00					120.77
5.90	287,520	858.40	126.43 oc	1.76 ic	124.67 ic		0.00	0.00					126.43
6.00	292,731	858.50	131.99 oc	1.76 ic	130.23 ic		0.00	0.00					131.99
6.10	297,943	858.60	136.19 oc	1.76 ic	134.42 ic		0.00	0.00					136.18
6.20	303,154	858.70	141.55 oc	1.76 ic	139.78 ic		0.00	0.00					141.55
6.30	308,365	858.80	146.76 oc	1.76 ic	145.00 ic		0.00	0.00					146.76
6.40	313,576	858.90	150.72 oc	1.77 ic	148.95 ic		0.00	0.00					150.71
6.50	318,788	859.00	155.66 oc	1.77 ic	153.88 ic		0.00	0.00					155.65
6.60	324,128	859.10	160.39 oc	1.77 ic	158.62 ic		0.00	0.00					160.39
6.70	329,469	859.20	165.81 oc	1.77 ic	164.04 ic		0.00	0.00					165.81
6.80	334,809	859.30	170.06 oc	1.78 ic	168.28 ic		0.00	0.00					170.06
6.90	340,149	859.40	174.78 oc	1.78 ic	173.00 ic		0.00	0.00					174.78
7.00	345,490	859.50	178.50 oc	1.79 ic	176.72 ic		0.00	0.00					178.50
7.10	350,830	859.60	183.02 oc	1.79 ic	181.23 ic		0.00	0.00					183.02
7.20	356,170	859.70	186.43 oc	1.68 ic	184.75 ic		0.00	0.00					186.43
7.30	361,511	859.80	190.15 oc	1.69 ic	188.46 ic		0.00	0.00					190.15
7.40	366,851	859.90	193.29 ос	1.70 ic	191.59 ic		0.00	0.00					193.28
7.50	372,191	860.00	195.82 oc	1.71 ic	194.11 ic		0.00	0.00					195.82
7.60	377,676	860.10	199.32 oc	1.72 ic	197.60 ic		0.00	0.00					199.32
7.70	383,161	860.20	202.77 oc	1.72 ic	201.04 ic		0.00	0.00					202.77
7.80	388,646	860.30	206.15 oc	1.73 ic	204.42 ic		0.00	0.00					206.15
7.90	394,131	860.40	209.48 oc	1.74 ic	207.74 ic		0.00	0.00					209.48
8.00	399,616	860.50	212.76 oc	1.75 ic	211.01 ic		0.00	0.00					212.76
8.10	405,101	860.60	215.67 oc	1.75 ic	212.23 ic		1.68	0.00					215.67
8.20	410,586	860.70	219.27 oc	1.76 ic	212.74 ic		4.76	0.00					219.26
8.30	416,071	860.80	223.34 oc	1.76 ic	212.84 ic		8.75	0.00					223.34
8.40	421,556	860.90	227.80 oc	1.76 ic	212.57 ic		13.47	0.00					227.79
8.50	427,041	861.00	232.57 oc	1.75 ic	211.98 ic		18.84	0.00					232.57
8.60	432,683	861.10	237.60 oc	1.74 ic	211.09 ic		24.76	0.00					237.60
8.70	438,324	861.20	242.86 oc	1.73 ic	209.92 ic		31.20	0.00					242.86
8.80	443,966	861.30	248.31 oc	1.72 ic	208.47 ic		38.12	0.00					248.31
8.90	449,608	861.40	253.94 oc	1.71 ic	206.74 ic		45.48	0.00					253.94
9.00	455,250	861.50	259.72 oc	1.69 ic	204.75 ic		53.27	0.00					259.72
9.10	460,891	861.60	265.63 oc	1.67 ic	202.49 ic		61.46	0.00					265.63
9.20	466,533	861.70	271.65 oc	1.65 ic	199.97 ic		70.02	0.00					271.64
9.30	472,175	861.80	277.76 oc	1.63 ic	197.17 ic		78.96	0.00					277.76
9.40	477,817	861.90	283.96 oc	1.60 ic	194.11 ic		88.24	0.00					283.95
9.50	483,459	862.00 862.10	290.23 oc	1.58 ic	190.77 ic		97.88	0.00					290.23
9.60 9.70	489,532 495,605	862.10 862.20	296.54 oc 302.90 oc	1.55 ic 1.51 ic	187.16 ic 183.28 ic		107.83 118.10	0.00 0.00					296.54 302.89
9.10	433,003	002.20	302.80 00	1.5116	100.2010		1 10.10	0.00					302.08

Continues on next page...

Walled Pond

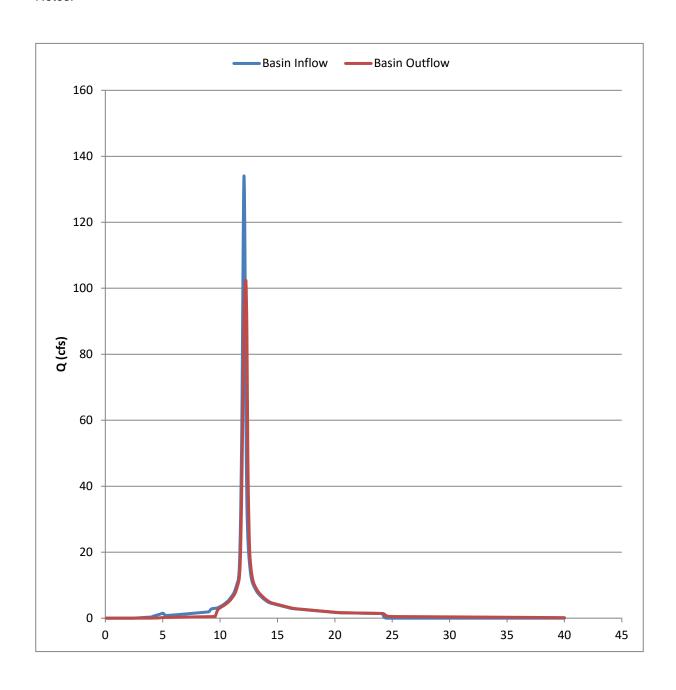
Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
9.80	501,679	862.30	309.26 oc	1.48 ic	179.12 ic		128.66	0.00					309.26
9.90	507,752	862.40	315.65 oc	1.44 ic	174.67 ic		139.53	0.00					315.64
10.00	513,825	862.50	322.03 oc	1.40 ic	169.93 ic		150.68	0.00					322.02
10.10	519,899	862.60	321.69 oc	1.44 ic	174.38 ic		124.66 ic	2.29					302.77
10.20	525,972	862.70	321.37 oc	1.48 ic	178.68 ic		127.59 ic	9.97					317.73
10.30	532,045	862.80	321.05 oc	1.51 ic	182.89 ic		130.46 ic	20.66					335.52
10.40	538,119	862.90	321.21 oc	1.54 ic	186.40 ic		133.27 ic	33.67					354.87
10.50	544,192	863.00	324.04 oc	1.54 ic	186.47 ic		136.02 ic	48.67					372.71

...End

Cabelas Basin

Hydrograph Type = Reservoir Peak Discharge = 102.19 Storm Frequency = 50 yrs Time to Peak = 12:10 hrs

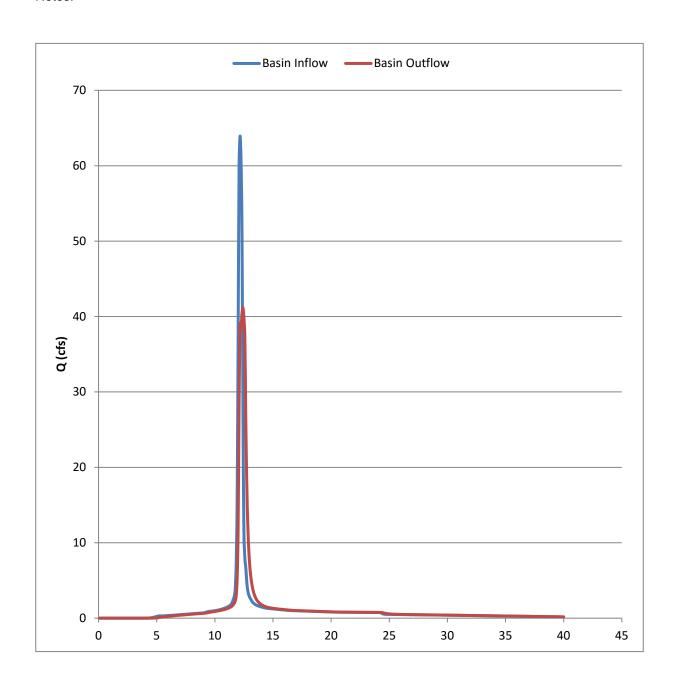

6 min

Max Elevation = 871.41Max Storage = $107,120 \text{ Ft}^3$

Date = 6/2/2016

Notes:

Time Interval

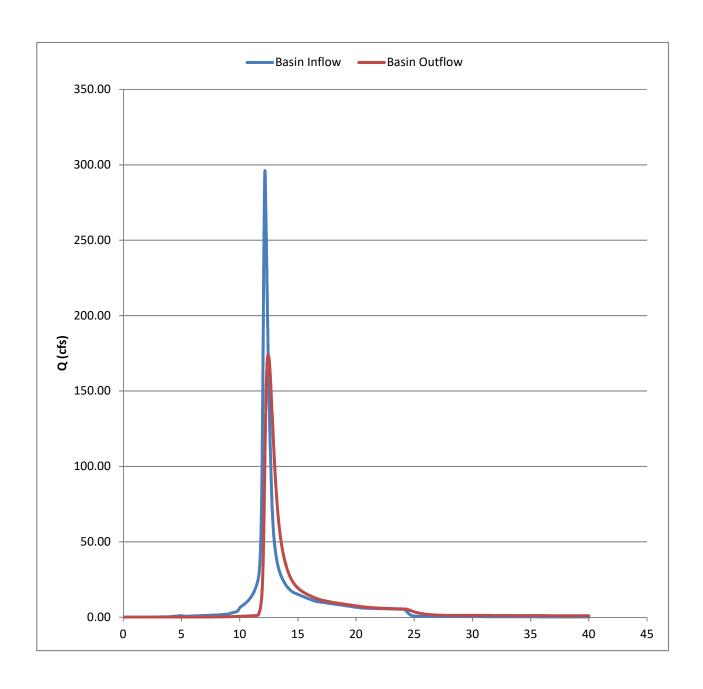


Existing Pond

Hydrograph Type = Reservoir Peak Discharge = 41.16
Storm Frequency = 50 yrs Time to Peak = 12:25 hrs
Time Interval = 6 min

Max Elevation = 866.25Max Storage = $42,017 \text{ Ft}^3$ Date = 6/2/2016

Notes:


Primary Basin

Hydrograph Type = Reservoir Peak Discharge = 173.75 Storm Frequency = 50 yrs Time to Peak = 12:25 hrs

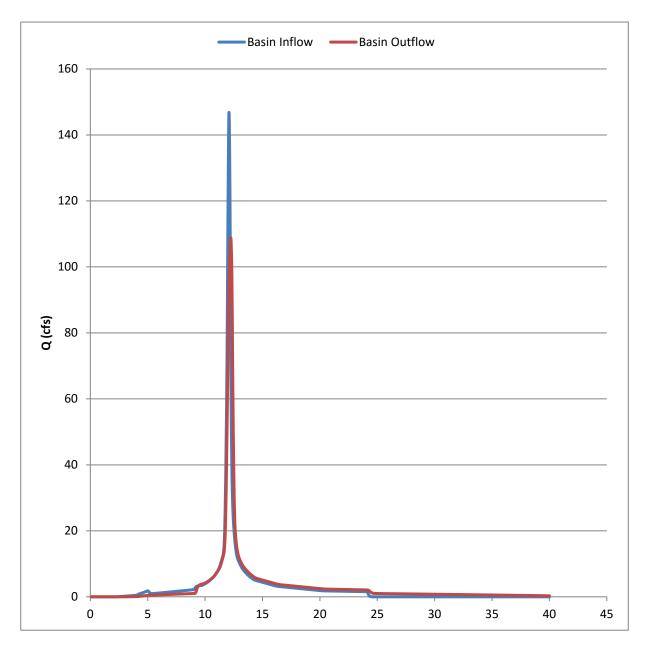
Time Interval = 6 minMax Elevation = 859.71Max Storage = $369,687 \text{ Ft}^3$

Date = 3/16/2017

Notes: Detention Basin As-Built

Cabelas Basin

Hydrograph Type = Reservoir Peak Discharge = 108.61 Storm Frequency = 100 yrs Time to Peak = 12:10 hrs


6 min

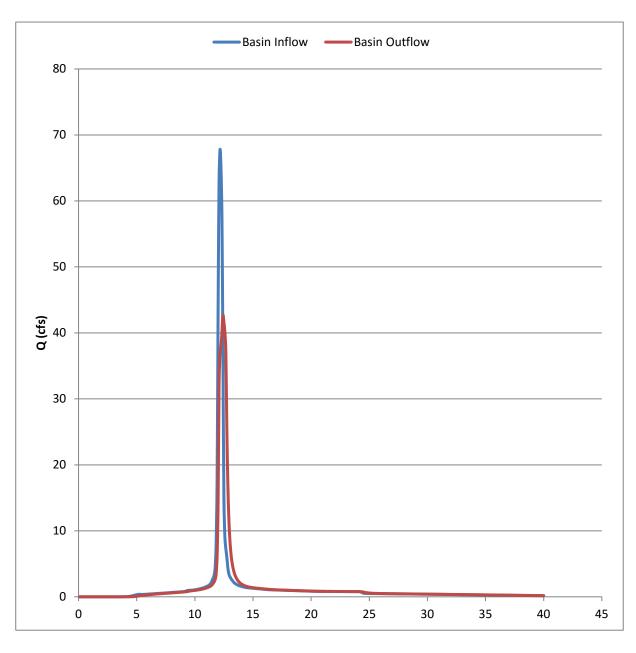
Max Elevation = 871.84 $\text{Max Storage} = 114,387 \text{ Ft}^3$

Date = 6/2/2016

Notes:

Time Interval

Existing Pond


Hydrograph Type = Reservoir Peak Discharge = 42.67
Storm Frequency = 100 yrs Time to Peak = 12:25 hrs

6 min

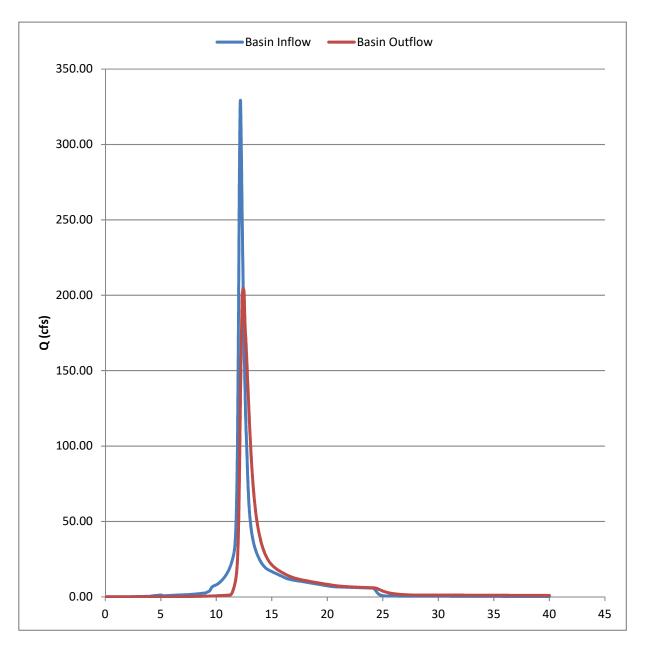
 $\begin{array}{ll} \text{Max Elevation} = & 866.53 \\ \text{Max Storage} = & 49,766 \text{ Ft}^3 \\ \text{Date} = & 6/2/2016 \end{array}$

Notes:

Time Interval

Primary Basin

Time Interval


Hydrograph Type = Reservoir Peak Discharge = 204.53 Storm Frequency = 100 yrs Time to Peak = 12:25 hrs

6 min

Max Elevation = 860.18Max Storage = $396,530 \text{ Ft}^3$

Date = 3/16/2017

Notes: Detention As-Built

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 20.05 cfs

Design Flow: 208.15 cfs (100 yr Basin Outflow) Maximum Flow: 329.42 cfs (100 yr Basin Inflow)

Table 1 - Summary of Culvert Flows at Crossing: Keefe Property

Headwater Elevation (ft)	Total Discharge (cfs)	4'x8' Box Discharge (cfs)	Roadway Discharge (cfs)	Iterations	
853.18	20.05	20.05	0.00	1	
854.04	50.99	50.99	0.00	1	
854.71	81.92	81.92	0.00	1	
855.29	112.86	112.86	0.00	1	
855.83	143.80	143.80	0.00	1	
856.36	174.74	174.74	0.00	1	
856.91	205.67	205.67	0.00	1	
857.02	208.15	208.15	0.00	1	
858.24	267.55	267.55	0.00	1	
859.40	298.48	298.48	0.00	1	
860.64	329.42	329.42	0.00	1	
862.54	373.32	373.32	0.00	Overtopping	

Rating Curve Plot for Crossing: Keefe Property

Total Rating Curve Crossing: Keefe Property

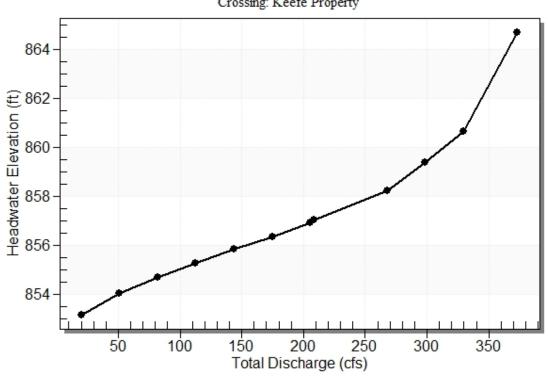
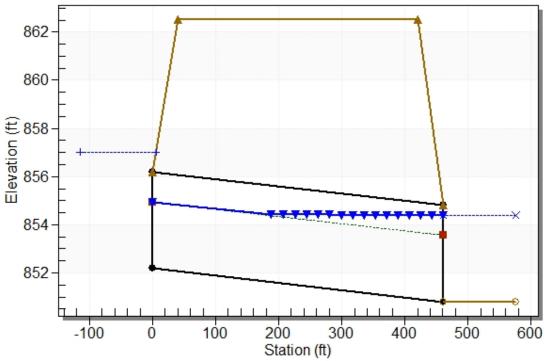


Table 2 - Culvert Summary Table: 4'x8' Box

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
20.05	20.05	853.18	0.993	0.0*	1-JS1t	0.565	0.580	0.650	0.650	3.853	7.706
50.99	50.99	854.04	1.850	0.0*	1-JS1t	1.055	1.081	1.233	1.233	5.169	10.338
81.92	81.92	854.71	2.519	0.643	1-JS1t	1.448	1.482	1.737	1.737	5.897	11.794
112.86	112.86	855.29	3.103	1.370	1-JS1t	1.799	1.835	2.207	2.207	6.393	12.786
143.80	143.80	855.83	3.644	2.160	1-S2n	2.126	2.157	2.126	2.658	8.456	13.524
174.74	174.74	856.36	4.174	3.019	5-S2n	2.437	2.456	2.437	3.098	8.962	14.103
205.67	205.67	856.91	4.718	3.952	5-S2n	2.737	2.738	2.737	3.529	9.392	14.572
208.15	208.15	857.02	4.762	4.832	7-M1t	2.761	2.760	3.563	3.563	7.303	14.606
267.55	267.55	858.24	5.924	6.046	4-FFf	3.313	3.263	4.000	4.374	8.361	15.293
298.48	298.48	859.40	6.616	7.209	4-FFf	3.592	3.510	4.000	4.790	9.328	15.578
329.42	329.42	860.64	7.379	8.451	4-FFf	4.000	3.748	4.000	5.204	10.294	15.826

* Full Flow Headwater elevation is below inlet invert.


Straight Culvert

Inlet Elevation (invert): 852.19 ft, Outlet Elevation (invert): 850.81 ft

Culvert Length: 461.00 ft, Culvert Slope: 0.0030

Water Surface Profile Plot for Culvert: 4'x8' Box

Crossing - Keefe Property, Design Discharge - 208.2 cfs Culvert - 4'x8' Box, Culvert Discharge - 208.2 cfs

Site Data - 4'x8' Box

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 852.19 ft
Outlet Station: 461.00 ft
Outlet Elevation: 850.81 ft

Number of Barrels: 1

Culvert Data Summary - 4'x8' Box

Barrel Shape: Concrete Box

Barrel Span: 8.00 ft Barrel Rise: 4.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall

Inlet Depression: NONE

Tailwater Channel Data - Keefe Property

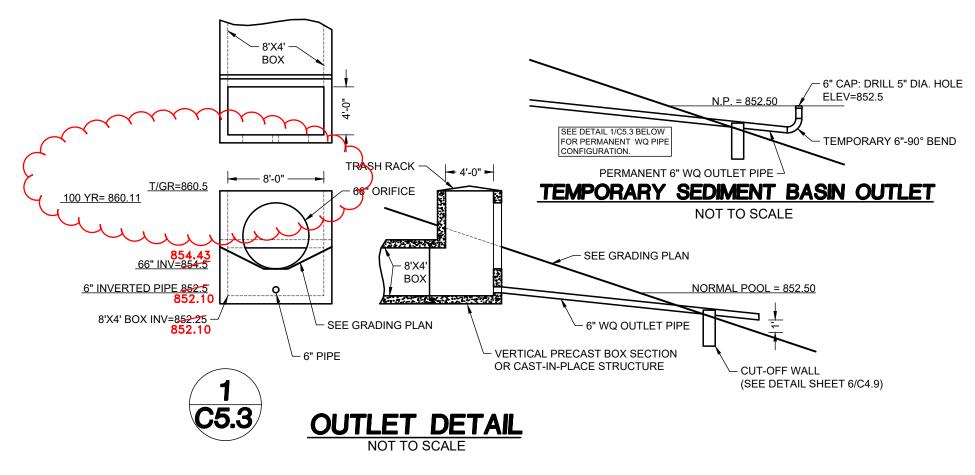
Tailwater Channel Option: Rectangular Channel

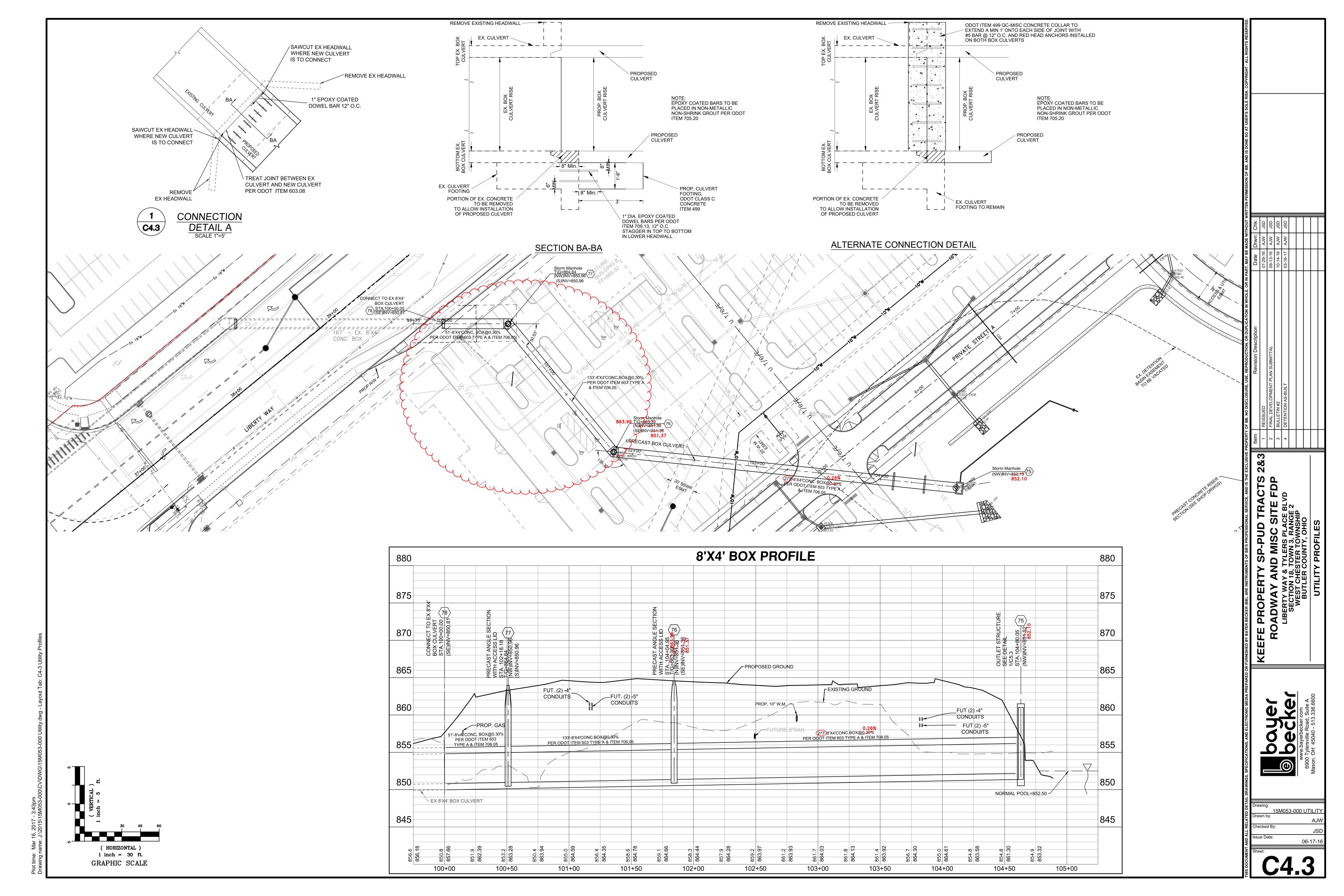
Bottom Width: 4.00 ft Channel Slope: 0.0100

Channel Manning's n: 0.0120

Channel Invert Elevation: 850.81 ft

Roadway Data for Crossing: Keefe Property


Roadway Profile Shape: Constant Roadway Elevation


Crest Length: 60.00 ft Crest Elevation: 862.54 ft Roadway Surface: Paved

Roadway Top Width: 380.00 ft

X. SEE LANDSCAPE PLANS FOR SEED MIXTURES TO BE USED THE GRADED AREAS.

TRASH RACK: STORMRAX, PEAK SERIES OR APPROVED EQUAL.
CONTRACTOR SHALL PROVIDE SHOP DRAWING SUBMITTAL
FOR REVIEW & APPROVAL BY OWNER PRIOR TO ORDERING MATERIAL.

