

CINCINNATI COLUMBUS DAYTON LOUISVILLE 6219 Centre Park Drive West Chester, OH 45069 phone > 513.779.7851 fax > 513.779.7852 www.kleingers.com

Storm Sewer and Detention Report for Brate Farm

Project # 160651.004

West Chester Township Butler County, OH

Prepared: August 9, 2019 Revised: September 25, 2019

Designed by: Joe Haubert, P.E. Reviewed by: Kevin Elliott & Josh Shaw, P.E.

Table of Contents

Project Summary	1
Drainage Overview and Strategy	1
Overland Detention and Structure	2
Conclusion	3
Appendix	

- Local Drainage Map
- Storm Sewer Calculations and Profiles
- Soils Map
- Pre- and Post-developed Drainage Maps
- Detention Outlet Detail
- Water Quality Calculations
- Hydrology Studio Summary and Drainage Calculations

Project Summary

This detention report is for the Brate Farm development, which will be located directly west of 8341 Princeton Glendale Rd (also known as 747). The existing site is vacant and the proposed project will include a combination of 3 industrial buildings. The total size of the 3 proposed buildings are approximately 6414,570 total Square Feet. The Southwest corner of the site is within the existing flood zone; this project will involve some of fill material within the floodplain. Compensatory storage is provided as per Butler County's requirements.

Drainage Overview and Strategy

The proposed retention pond is designed to hold the critical year storm back to the 1 year pre-developed rate. Storms of less frequent occurrence than the critical storm are reduce flow rates by one storm event. The retention pond will also provide enough volume to maintain the existing floodplain storage.

The pre-developed and post-developed drainage maps can be found in the Appendix. Off-site drainage runs onto the site from the east. A proposed pond and storm sewers will route offsite runoff to the proposed retention pond. This report does not include any future development of this offsite area.

The critical storm for a specific development area is determined by calculating the total volume of runoff from a one-year frequency, 24 hour duration storm on the new development area before and after development. From the volumes calculated, the percentage increase in volume of the runoff due to the development is determined. Using this percentage, the 24-hour critical year storm is selected from the following table:

IF THE PER	CENTAGE OF IN	CREASE IN VOLUME OF
	RUNOF	F IS:
		The critical storm for peak
Equal to or		rate
greater than	and less than	control will be
N/A	10	1 year
10	20	2 year
20	50	5 year
50	100	10 year
100	250	25 year
250	500	50 year
600	N/A	100 year

The volume and flows that were obtained for the pre-developed and post-developed 1-yr case is shown in the following tables:

PRE	-DEVELOPM	IENT	[POST-D	EVELOPME	NT EAST
Storm Frequency (yr)	Hydrologic Volume (ac-ft)	Hydrologic Runoff Rate (cfs)		Storm Frequency (yr)	Hydrologic Volume (ac-ft)	Hydrologic Runoff Rate (cfs)
l-yr	3.36	16.39		l-yr	0.31	1.94
			1			
POST-DI	EVELOPMEN	NT WEST		POS	T-DEVELOP UNDETAINE	MENT 2D
POST-DI Storm Frequency (yr)	EVELOPMEN Hydrologic Volume (ac-ft)	NT WEST Hydrologic Runoff Rate (cfs)		Storm Frequen cy (yr)	T-DEVELOP UNDETAINE Hydrologic Volume (ac-ft)	MENT D Hydrologic Runoff Rate (cfs)

(4.62-3.36) / 3.36 = 0.375 = 38% Increase in Volume therefore the Critical Year Storm is the 5-year frequency.

Water Quality

Water quality has been determined for this site per the requirements of the OEPA's permit OHC000005. For wet ponds, the water quality volume must be provided both above and below the normal water elevation. This site requires 2.22 ac-ft of water quality storage. With a NWE of 593, this retention pond has 8.885 ac-ft of storage below it, and 3.60 ac-ft of storage above it from elevation 593' to 594'. Water quality is being handled with a 10" orifice located on the modified ODOT 2-3 outlet structure. See the outlet structure detail and water quality calculations in the Appendix for more information.

Overland Detention and Structure

There are two basins designed for this site. The eastern basin is designed purely to route runoff on the east side along a flat slope to the storm network to the north. It connects to a 15" pipe at elevation 603'. It is not intended to provide detention or flood compensatory storage. Since flow from this basin enters the site's storm network, the area to the pond at the 15" pipe was modeled in the Stormwater Studio calculations. However, since that area goes into the basin and not directly to the 15" pipe, the HGL modeled through that pipe is vastly exaggerated. Instead, the Hydrology Studio model includes the area to the eastern basin and reports a more accurate flow to the 15" pipe. Both calculation reports can be found in the Appendix.

The second western basin has been designed to provide all detention and flood compensatory storage for the site. To ensure an allowable release rate, a control structure was designed to regulate the post developed outflow. The controlling outlet structure consists of the following: a 10" orifice at elevation 593' used for water quality, (3) 0.5'x2' windows at elevation 594, and a 12" outlet pipe. In addition, a flood spillway has been designed on the southwestern side of the basin at elevation 600', which will allow flood waters above that elevation to flow in and out of the site freely.

The proposed structure and detention facility details can be found in the Appendix.

Conclusion

The detention volume was checked by using the Hydrology Studio calculations included in the Appendix. A list of the regulated release rates and storage elevations of the detention structure are shown below.

Storm Frequency (yr)	Pre-Developed On-Site Release Rate (cfs)	Allowable On-Site Release Rate (cfs)
1	<mark>16.39</mark>	<mark>16.39</mark>
2	23.70	<mark>16.39</mark>
5	34.21	<mark>16.39</mark>
10	42.78	34.21
25	54.50	42.78
50	63.88	54.50
100	73.37	63.88

Storm Frequency (yr)	PostDev West Pond Release Rate (cfs)	L	Pond 2 Elevation (ft)	کرکر	PostDev Undetained Release Rate (cfs)	Total PostDev Release Rate (cfs)
1	1.266	Y	593.90	く	0.913	1.296
2	1.791		594.16	٨	1.670	2.214
5	2.255	λ	594.57	٨	2.854	3.754
10	2.560	X	594.91	٨	3.868	5.032
25	2.947	$\langle \rangle$	595.37	\sum	5.307	6.853
50	3.211	$\left(\right)$	595.74	$ \$	6.493	8.327
100	3.459		596.12	\mathcal{I}	7.720	9.767
			1 1			

Based on the calculated findings, the total post-development release rate is below the allowable release rate. The post developed rates are much lower than the pre-developed conditions, this is due to the large detention size that accommodates for floodplain storage and low storm pipes. The large detention surface area means there is minimal head on the outlet structure which leads to a very low release rate.

As part of this report, the floodplain volume must be maintained from the pre-developed to post-developed conditions.

Total Volume of Pond @ 601.00: 33.074 Ac-ft (1,440,701 cf)

Volume of Ponds during 100-year storm event @ 596.12: 20.622 Ac-ft (898,292 cf)

Volume of Ponds remaining for floodplain storage: 33.074 - 20.622 = 12.452 Ac-ft

Existing Volume for floodplain = 3.925 Ac-ft

12.452 Ac-ft > 3.925 Ac-ft

The post-developed volume is sufficient to handle the detention and floodplain volumes.

APPENDIX

	Line Li No. ID	ne	Inlet ID	Drain Area	Total Area	Inlet Time	Pipe Travel	Tc System	i Inlet	i Syst	Runoff Coeff	Incr CxA	Total C x A	Flow Rate	n-value Pipe	Line Size	Line Length	Line Slope	Invert Up	Invert Dn	Vel Ave	Capac. Full	Sf Ave	HGL Up	Grnd/Rim Elev Up	Cover Up	Cover Dn	Grnd/Rim Elev Dn	HGL Dn
				(ac)	(ac)	(min)	(min)	(min)	(in/hr)	(in/hr)	(C)			(cfs)		(in)	(ft)	(ft/ft)	(ft)	(ft)	(ft/s)	(cfs)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
F	1 101-100		101	0.228	36.015	10.0	0.84	32.7	5.47	2.92	0.90	0.20	28.12	82.06	0.013	48	297.17	0.0051	593.00	591.48	7.02	102.70	0.003	596.24	603.24	6.25	0.51	595.98	595.48
	2 102-101		102	0.444	35.787	10.0	0.58	32.2	5.47	2.95	0.90	0.40	27.91	82.38	0.013	48	210.42	0.0035	593.73	593.00	7.65	84.82	0.003	596.91	601.14	3.41	6.25	603.24	596.20
	3 103-102		103	0.218	20.098	10.0	0.65	31.5	5.47	2.99	0.90	0.20	13.79	41.22	0.013	42	155.40	0.0035	594.78	594.24	4.59	59.52	0.002	597.71	601.67	3.39	3.40	601.14	597.53
	4 104-103		104	0.205	19.879	10.0	0.63	30.9	5.47	3.03	0.90	0.18	13.59	41.15	0.013	42	152.00	0.0035	595.31	594.78	5.10	59.54	0.002	597.89	602.20	3.38	3.39	601.67	597.71
	5 105-104		105	0.182	19.675	10.0	0.63	30.2	5.47	3.07	0.90	0.16	13.41	41.10	0.013	42	152.00	0.0035	595.84	595.31	5.80	59.17	0.002	598.13	602.72	3.38	3.38	602.20	597.88
	6 106-105		106	0.000	19.493	0.0	0.34	29.9	0.00	3.09	0.00	0.00	13.25	40.89	0.013	42	82.42	0.0035	596.12	595.84	6.33	59.18	0.003	598.31	603.97	4.34	3.38	602.72	598.12
	7 107-106		107	0.317	17.173	10.0	0.25	29.6	5.47	3.10	0.90	0.29	11.16	34.62	0.013	36	69.58	0.0035	596.80	596.55	6.32	39.60	0.004	598.97	603.24	3.44	4.41	603.97	598.73
	8 108-107		108	0.155	9.757	10.0	0.55	29.1	5.47	3.14	0.90	0.14	4.48	14.07	0.013	24	144.03	0.0075	599.32	598.24	6.35	19.62	0.006	600.65	604.32	2.99	3.00	603.24	599.57
	9 109-108		109	0.146	9.602	10.0	0.55	28.5	5.47	3.17	0.90	0.13	4.34	13.79	0.013	24	143.00	0.0075	600.39	599.32	6.03	19.52	0.006	601.70	605.39	3.00	2.99	604.32	600.75
	10 110-109		110	0.114	9.457	10.0	0.56	28.0	5.47	3.21	0.90	0.10	4.21	13.54	0.013	24	143.00	0.0075	601.46	600.39	6.02	19.59	0.006	602.77	606.46	3.00	3.00	605.39	601.78
	11 111-110		111	9.342	9.342	27.9	0.08	27.9	3.22	3.22	0.44	4.11	4.11	13.23	0.013	15	53.19	0.0148	603.00	602.21	10.78	7.86	0.042	605.70	604.75	0.50	3.00	606.46	603.46
	12 300-106		300	0.228	2.320	10.0	0.64	16.5	5.47	4.32	0.90	0.21	2.09	9.02	0.013	24	112.48	0.005	597.19	596.62	2.95	16.07	0.001	598.98	607.09	7.90	5.34	603.97	598.83
	13 301-300		301	0.265	1.904	10.0	0.94	15.6	5.47	4.45	0.90	0.24	1.71	7.62	0.013	24	142.50	0.005	597.91	597.19	3.13	16.05	0.002	599.14	607.07	7.16	7.90	607.09	599.03
	14 302-301		302	0.330	1.462	10.0	0.79	14.8	5.47	4.57	0.90	0.30	1.32	6.01	0.013	18	172.00	0.005	599.27	598.41	4.67	7.41	0.005	600.29	606.80	6.03	7.16	607.07	599.44
	15 303-302		303	0.250	0.780	10.0	1.41	13.4	5.47	4.80	0.90	0.22	0.70	3.37	0.013	18	172.00	0.005	600.12	599.27	3.00	7.41	0.003	600.86	607.07	5.44	6.03	606.80	600.56
	16 304-303		304	0.230	0.327	10.0	1.85	11.5	5.47	5.14	0.90	0.21	0.29	1.51	0.013	15	142.50	0.0035	600.87	600.37	2.79	3.82	0.003	601.39	607.09	4.97	5.44	607.07	600.99
	17 304A-30	4	304A	0.097	0.097	10.0	1.52	10.0	5.47	5.47	0.90	0.09	0.09	0.48	0.013	12	55.24	0.0035	601.32	601.12	2.07	2.12	0.003	601.63	605.32	3.00	4.97	607.09	601.48
	18 303A-30	3	303A	0.135	0.204	10.0	0.83	11.2	5.47	5.21	0.90	0.12	0.18	0.96	0.013	12	62.94	0.0045	600.91	600.62	2.88	2.40	0.005	601.35	605.03	3.12	5.44	607.07	601.06
	19 303B-30	3A	303B	0.069	0.069	10.0	1.20	10.0	5.47	5.47	0.90	0.06	0.06	0.34	0.013	12	31.00	0.0045	601.05	600.91	0.91	2.40	0.000	601.47	605.01	2.96	3.12	605.03	601.47
	20 302A-30	2	302A	0.107	0.353	10.0	0.52	13.0	5.47	4.86	0.90	0.10	0.32	1.54	0.013	12	65.60	0.0045	600.06	599.77	2.69	2.38	0.003	600.68	604.45	3.40	6.03	606.80	600.54
	21 302C-30	2A	302C	0.107	0.176	10.0	1.83	11.2	5.47	5.21	0.90	0.10	0.16	0.83	0.013	12	120.00	0.0045	600.60	600.06	2.04	2.39	0.003	601.01	604.74	3.14	3.40	604.45	600.79
	22 302D-30	2C	302D	0.069	0.069	10.0	1.20	10.0	5.47	5.47	0.90	0.06	0.06	0.34	0.013	12	31.00	0.0044	600.74	600.60	1.02	2.35	0.001	601.12	604.72	2.99	3.14	604.74	601.11
	23 301A-30	1	301A	0.107	0.176	10.0	1.94	11.2	5.47	5.21	0.90	0.10	0.16	0.83	0.013	18	56.66	0.0045	599.66	599.41	2.65	7.04	0.004	600.01	604.17	3.00	6.16	607.07	599.76
	24 301B-30	1A	301B	0.069	0.069	10.0	1.20	10.0	5.47	5.47	0.90	0.06	0.06	0.34	0.013	12	31.00	0.0046	600.31	600.16	2.16	2.41	0.005	600.56	604.15	2.84	3.00	604.17	600.42
	25 302B-30	2A	302B	0.069	0.069	10.0	1.20	10.0	5.47	5.47	0.90	0.06	0.06	0.34	0.013	12	31.00	0.0044	600.20	600.06	0.60	2.37	0.000	600.82	604.43	3.24	3.40	604.45	600.81
	26 400-107		400	0.432	7.099	10.0	0.75	20.2	5.47	3.87	0.90	0.39	6.39	24.76	0.013	36	156.87	0.0036	597.36	596.80	4.21	39.91	0.002	599.51	603.32	2.96	3.44	603.24	599.36
	27 400A - 40	0	400A	1.800	5.019	20.0	0.22	20.0	3.90	3.90	0.90	1.62	4.52	17.61	0.013	24	75.13	0.0075	597.93	597.36	5.80	19.63	0.006	599.69	605.03	5.10	3.96	603.32	599.35
	28 400B-40	0A	400B	1.897	2.403	10.0	1.50	14.1	5.47	4.68	0.90	1.71	2.16	10.12	0.013	24	303.67	0.0045	599.30	597.93	3.76	15.17	0.002	600.70	605.03	3.73	5.10	605.03	600.09
	29 400C - 40	0B	400C	0.506	0.506	10.0	4.07	10.0	5.47	5.47	0.90	0.46	0.46	2.49	0.013	18	343.67	0.0045	601.35	599.80	2.74	7.04	0.003	601.95	607.55	4.71	3.73	605.03	600.94
	30 300A-30	0	300A	0.124	0.188	10.0	0.86	11.4	5.47	5.16	0.90	0.11	0.17	0.87	0.013	12	59.96	0.0045	599.46	599.19	2.80	2.38	0.004	599.88	603.93	3.47	6.90	607.09	599.61
	31 300B-30	0A	300B	0.064	0.064	10.0	1.40	10.0	5.47	5.47	0.90	0.06	0.06	0.32	0.013	12	33.81	0.0054	599.64	599.46	1.01	2.63	0.001	600.00	603.86	3.22	3.47	603.93	599.99
	32 200-102		200	1.452	15.245	10.0	0.57	20.6	5.47	3.83	0.90	1.31	13.72	52.61	0.013	42	183.08	0.0035	594.38	593.73	5.47	59.91	0.003	597.85	600.69	2.82	3.91	601.14	597.37
	33 200E-20	0	200E	1.471	5.019	20.0	0.61	20.0	3.90	3.90	0.90	1.32	4.52	17.61	0.013	24	205.55	0.0075	597.43	595.88	6.35	19.65	0.006	598.92	604.58	5.15	2.82	600.69	597.81
	34 200F-20	0E	200F	2.227	2.732	10.0	1.08	14.7	5.47	4.58	0.90	2.00	2.46	11.27	0.013	24	244.39	0.005	598.65	597.43	4.18	15.99	0.003	600.06	604.58	3.92	5.15	604.58	599.49
	Notes: IDF File =	160651.004	1.idf, Return P	Period = 10)-yrs.																								Project File: 004 STM.sws

Lir No	ne Line . ID	Inlet ID	Drain Area	Total Area	Inlet Time	Pipe Travel	Tc System	i Inlet	i Syst	Runoff Coeff	Incr CxA	Total C x A	Flow Rate	n-value Pipe	Line Size	Line Length	Line Slope	Invert Up	Invert Dn	Vel Ave	Capac. Full	Sf Ave	HGL Up	Grnd/Rim Elev Up	Cover Up	Cover Dn	Grnd/Rim Elev Dn	HGL Dn	
			(ac)	(ac)	(min)	(min)	(min)	(in/hr)	(in/hr)	(C)			(cfs)		(in)	(ft)	(ft/ft)	(ft)	(ft)	(ft/s)	(cfs)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
3	5 200G-200F	200G	0.506	0.506	10.0	4.69	10.0	5.47	5.47	0.90	0.46	0.46	2.49	0.013	18	395.94	0.005	601.13	599.15	2.68	7.43	0.003	601.73	607.27	4.64	3.92	604.58	600.37	
36	6 401-400	401	0.487	1.648	10.0	1.99	17.0	5.47	4.25	0.90	0.44	1.48	6.31	0.013	30	176.00	0.0035	597.98	597.36	1.45	24.30	0.000	599.84	603.32	2.84	3.46	603.32	599.81	
3	7 402-401	402	0.487	1.161	10.0	2.68	14.3	5.47	4.64	0.90	0.44	1.04	4.84	0.013	30	176.00	0.0035	598.59	597.98	1.56	24.10	0.000	599.88	603.32	2.23	2.84	603.32	599.86	
38	3 403-402	403	0.674	0.674	10.0	4.34	10.0	5.47	5.47	0.90	0.61	0.61	3.32	0.013	30	176.00	0.0035	599.20	598.59	1.88	24.11	0.001	599.98	603.32	1.62	2.23	603.32	599.91	
39	9 400D-400A	400D	0.816	0.816	10.0	0.31	10.0	5.47	5.47	0.90	0.73	0.73	4.02	0.013	15	61.50	0.01	599.30	598.68	3.60	6.46	0.004	600.26	608.03	7.48	5.10	605.03	600.09	
40	200H-200E	200H	0.816	0.816	10.0	0.35	10.0	5.47	5.47	0.90	0.73	0.73	4.02	0.013	15	68.50	0.01	598.87	598.18	3.93	6.46	0.005	599.70	607.58	7.46	5.15	604.58	599.52	
4	1 200A-200	200A	1.388	4.690	20.0	0.32	20.0	3.90	3.90	0.90	1.25	4.22	16.46	0.013	24	100.38	0.0075	595.96	595.21	5.24	19.57	0.005	598.42	602.93	4.96	3.49	600.69	597.89	
42	2 200B-200A	200B	1.897	2.403	10.0	1.26	14.1	5.47	4.68	0.90	1.71	2.16	10.12	0.013	24	254.00	0.005	597.23	595.96	3.24	15.99	0.002	599.16	602.93	3.70	4.96	602.93	598.68	
4:	3 200C-200B	200C	0.506	0.506	10.0	4.07	10.0	5.47	5.47	0.90	0.46	0.46	2.49	0.013	18	343.67	0.005	599.45	597.73	2.57	7.43	0.003	600.05	606.10	5.15	3.70	602.93	599.29	
44	4 200D-200A	200D	0.899	0.899	10.0	0.27	10.0	5.47	5.47	0.90	0.81	0.81	4.42	0.013	15	59.17	0.01	597.30	596.71	3.60	6.46	0.005	598.92	605.93	7.37	4.96	602.93	598.64	
4	5 201-200	201	1.221	4.084	10.0	1.43	13.8	5.47	4.73	0.90	1.10	3.68	17.38	0.013	42	161.17	0.0035	594.94	594.38	1.82	59.49	0.000	598.30	600.69	2.25	2.82	600.69	598.26	
40	6 202-201	202	1.221	2.863	10.0	1.42	12.3	5.47	4.98	0.90	1.10	2.58	12.83	0.013	36	161.17	0.0035	595.51	594.94	1.83	39.44	0.000	598.36	600.69	2.19	2.75	600.69	598.31	
4	7 203-202	203	1.642	1.642	10.0	2.35	10.0	5.47	5.47	0.90	1.48	1.48	8.08	0.013	36	161.17	0.0035	596.07	595.51	1.26	39.44	0.000	598.41	600.69	1.62	2.19	600.69	598.39	
																													l
																													l
																													l
																													<u>.</u>
Not	es: IDF File = 160651.0	04.idf, Return l	-eriod = 10	J-yrs.																								Project	File: 004 STM.sws

	Line Line No. ID	Inlet ID	Drain Area	Total Area	Inlet Time	Pipe Travel	Tc System	i Inlet	i Syst	Runoff Coeff	Incr CxA	Total C x A	Flow Rate	n-value Pipe	Line Size	Line Length	Line Slope	Invert Up	Invert Dn	Vel Ave	Capac. Full	Sf Ave	HGL Up	Grnd/Rim Elev Up	Cover Up	Cover Dn	Grnd/Rim Elev Dn	HGL Dn
			(ac)	(ac)	(min)	(min)	(min)	(in/hr)	(in/hr)	(C)			(cfs)		(in)	(ft)	(ft/ft)	(ft)	(ft)	(ft/s)	(cfs)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
F	1 101-100	101	0.228	36.015	10.0	0.74	32.1	6.14	3.36	0.90	0.20	28.12	94.45	0.013	48	297.17	0.0051	593.00	591.48	7.73	102.70	0.004	596.58	603.24	6.25	0.51	595.98	595.48
	2 102-101	102	0.444	35.787	10.0	0.51	31.6	6.14	3.39	0.90	0.40	27.91	94.66	0.013	48	210.42	0.0035	593.73	593.00	7.53	84.82	0.004	597.91	601.14	3.41	6.25	603.24	597.00
I	3 103-102	103	0.218	20.098	10.0	0.57	31.1	6.14	3.43	0.90	0.20	13.79	47.28	0.013	42	155.40	0.0035	594.78	594.24	4.91	59.52	0.002	598.76	601.67	3.39	3.40	601.14	598.42
	4 104-103	104	0.205	19.879	10.0	0.56	30.5	6.14	3.47	0.90	0.18	13.59	47.11	0.013	42	152.00	0.0035	595.31	594.78	4.90	59.54	0.002	599.10	602.20	3.38	3.39	601.67	598.76
I	5 105-104	105	0.182	19.675	10.0	0.55	30.0	6.14	3.50	0.90	0.16	13.41	46.98	0.013	42	152.00	0.0035	595.84	595.31	4.88	59.17	0.002	599.43	602.72	3.38	3.38	602.20	599.10
	6 106-105	106	0.000	19.493	0.0	0.30	29.7	0.00	3.52	0.00	0.00	13.25	46.68	0.013	42	82.42	0.0035	596.12	595.84	4.85	59.18	0.002	599.61	603.97	4.34	3.38	602.72	599.44
	7 107-106	107	0.317	17.173	10.0	0.22	29.4	6.14	3.54	0.90	0.29	11.16	39.49	0.013	36	69.58	0.0035	596.80	596.55	5.63	39.60	0.003	599.70	603.24	3.44	4.41	603.97	599.49
	8 108-107	108	0.155	9.757	10.0	0.49	29.0	6.14	3.57	0.90	0.14	4.48	16.02	0.013	24	144.03	0.0075	599.32	598.24	6.44	19.62	0.006	600.74	604.32	2.99	3.00	603.24	599.79
	9 109-108	109	0.146	9.602	10.0	0.49	28.5	6.14	3.61	0.90	0.13	4.34	15.68	0.013	24	143.00	0.0075	600.39	599.32	6.35	19.52	0.006	601.79	605.39	3.00	2.99	604.32	600.87
	10 110-109	110	0.114	9.457	10.0	0.49	28.0	6.14	3.65	0.90	0.10	4.21	15.36	0.013	24	143.00	0.0075	601.46	600.39	6.31	19.59	0.006	602.85	606.46	3.00	3.00	605.39	601.91
	11 111-110	111	9.342	9.342	27.9	0.07	27.9	3.65	3.65	0.44	4.11	4.11	15.01	0.013	15	53.19	0.0148	603.00	602.21	12.23	7.86	0.054	606.34	604.75	0.50	3.00	606.46	603.46
	12 300-106	300	0.228	2.320	10.0	0.57	15.8	6.14	4.97	0.90	0.21	2.09	10.38	0.013	24	112.48	0.005	597.19	596.62	3.30	16.07	0.002	600.04	607.09	7.90	5.34	603.97	599.80
	13 301-300	301	0.265	1.904	10.0	0.84	15.0	6.14	5.11	0.90	0.24	1.71	8.75	0.013	24	142.50	0.005	597.91	597.19	2.78	16.05	0.001	600.30	607.07	7.16	7.90	607.09	600.09
	14 302-301	302	0.330	1.462	10.0	0.71	14.3	6.14	5.23	0.90	0.30	1.32	6.88	0.013	18	172.00	0.005	599.27	598.41	3.89	7.41	0.004	600.93	606.80	6.03	7.16	607.07	600.19
	15 303-302	303	0.250	0.780	10.0	1.26	13.0	6.14	5.46	0.90	0.22	0.70	3.84	0.013	18	172.00	0.005	600.12	599.27	2.37	7.41	0.001	601.30	607.07	5.44	6.03	606.80	601.09
	16 304-303	304	0.230	0.327	10.0	1.65	11.4	6.14	5.81	0.90	0.21	0.29	1.71	0.013	15	142.50	0.0035	600.87	600.37	2.14	3.82	0.002	601.52	607.09	4.97	5.44	607.07	601.36
	17 304A-304	304A	0.097	0.097	10.0	1.35	10.0	6.14	6.14	0.90	0.09	0.09	0.54	0.013	12	55.24	0.0035	601.32	601.12	1.81	2.12	0.002	601.67	605.32	3.00	4.97	607.09	601.59
	18 303A-303	303A	0.135	0.204	10.0	0.74	11.1	6.14	5.87	0.90	0.12	0.18	1.08	0.013	12	62.94	0.0045	600.91	600.62	2.17	2.40	0.002	601.43	605.03	3.12	5.44	607.07	601.35
	19 303B-303A	303B	0.069	0.069	10.0	1.07	10.0	6.14	6.14	0.90	0.06	0.06	0.38	0.013	12	31.00	0.0045	601.05	600.91	0.88	2.40	0.000	601.53	605.01	2.96	3.12	605.03	601.53
	20 302A-302	302A	0.107	0.353	10.0	0.46	12.7	6.14	5.52	0.90	0.10	0.32	1.75	0.013	12	65.60	0.0045	600.06	599.77	2.23	2.38	0.002	601.24	604.45	3.40	6.03	606.80	601.08
	21 302C-302A	302C	0.107	0.176	10.0	1.63	11.1	6.14	5.87	0.90	0.10	0.16	0.93	0.013	12	120.00	0.0045	600.60	600.06	1.31	2.39	0.001	601.38	604.74	3.14	3.40	604.45	601.30
	22 302D-302C	302D	0.069	0.069	10.0	1.07	10.0	6.14	6.14	0.90	0.06	0.06	0.38	0.013	12	31.00	0.0044	600.74	600.60	0.62	2.35	0.000	601.40	604.72	2.99	3.14	604.74	601.40
	23 301A-301	301A	0.107	0.176	10.0	1.73	11.1	6.14	5.87	0.90	0.10	0.16	0.93	0.013	18	56.66	0.0045	599.66	599.41	0.89	7.04	0.000	600.42	604.17	3.00	6.16	607.07	600.41
	24 301B-301A	301B	0.069	0.069	10.0	1.07	10.0	6.14	6.14	0.90	0.06	0.06	0.38	0.013	12	31.00	0.0046	600.31	600.16	2.24	2.41	0.005	600.57	604.15	2.84	3.00	604.17	600.43
	25 302B-302A	302B	0.069	0.069	10.0	1.07	10.0	6.14	6.14	0.90	0.06	0.06	0.38	0.013	12	31.00	0.0044	600.20	600.06	0.48	2.37	0.000	601.32	604.43	3.24	3.40	604.45	601.32
	26 400-107	400	0.432	7.099	10.0	0.67	20.2	6.14	4.38	0.90	0.39	6.39	27.95	0.013	36	156.87	0.0036	597.36	596.80	4.00	39.91	0.002	600.20	603.32	2.96	3.44	603.24	599.95
	27 400A-400	400A	1.800	5.019	20.0	0.20	20.0	4.40	4.40	0.90	1.62	4.52	19.87	0.013	24	75.13	0.0075	597.93	597.36	6.33	19.63	0.008	600.41	605.03	5.10	3.96	603.32	599.83
	28 400B-400A	400B	1.897	2.403	10.0	1.34	13.6	6.14	5.34	0.90	1.71	2.16	11.55	0.013	24	303.67	0.0045	599.30	597.93	3.68	15.17	0.003	601.61	605.03	3.73	5.10	605.03	600.82
	29 400C-400B	400C	0.506	0.506	10.0	3.62	10.0	6.14	6.14	0.90	0.46	0.46	2.79	0.013	18	343.67	0.0045	601.35	599.80	2.19	7.04	0.001	602.18	607.55	4.71	3.73	605.03	601.79
	30 300A-300	300A	0.124	0.188	10.0	0.76	11.2	6.14	5.83	0.90	0.11	0.17	0.99	0.013	12	59.96	0.0045	599.46	599.19	1.40	2.38	0.001	600.22	603.93	3.47	6.90	607.09	600.19
	31 300B-300A	300B	0.064	0.064	10.0	1.25	10.0	6.14	6.14	0.90	0.06	0.06	0.35	0.013	12	33.81	0.0054	599.64	599.46	0.62	2.63	0.000	600.26	603.86	3.22	3.47	603.93	600.25
	32 200-102	200	1.452	15.245	10.0	0.51	20.5	6.14	4.34	0.90	1.31	13.72	59.49	0.013	42	183.08	0.0035	594.38	593.73	6.18	59.91	0.003	598.84	600.69	2.82	3.91	601.14	598.20
	33 200E-200	200E	1.471	5.019	20.0	0.54	20.0	4.40	4.40	0.90	1.32	4.52	19.87	0.013	24	205.55	0.0075	597.43	595.88	6.33	19.65	0.008	600.40	604.58	5.15	2.82	600.69	598.81
	34 200F-200E	200F	2.227	2.732	10.0	0.96	14.2	6.14	5.24	0.90	2.00	2.46	12.89	0.013	24	244.39	0.005	598.65	597.43	4.10	15.99	0.003	601.55	604.58	3.92	5.15	604.58	600.76
	Notes: IDF File = 1606	51.004.idf, Return	Period = 25	ō-yrs.																								Project File: 004 STM.sws

Lii No	ne Lin 5. ID	e Inle ID	et l	Drain Area	Total Area	Inlet Time	Pipe Travel	Tc System	i Inlet	i Syst	Runoff Coeff	Incr CxA	Total C x A	Flow Rate	n-value Pipe	Line Size	Line Length	Line Slope	Invert Up	Invert Dn	Vel Ave	Capac. Full	Sf Ave	HGL Up	Grnd/Rim Elev Up	Cover Up	Cover Dn	Grnd/Rim Elev Dn	HGL Dn	
				(ac)	(ac)	(min)	(min)	(min)	(in/hr)	(in/hr)	(C)			(cfs)		(in)	(ft)	(ft/ft)	(ft)	(ft)	(ft/s)	(cfs)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
3	5 200G-200	F 200G	. (0.506	0.506	10.0	4.18	10.0	6.14	6.14	0.90	0.46	0.46	2.79	0.013	18	395.94	0.005	601.13	599.15	1.93	7.43	0.001	602.11	607.27	4.64	3.92	604.58	601.78	
3	6 401-400	401		0.487	1.648	10.0	1.77	16.2	6.14	4.90	0.90	0.44	1.48	7.27	0.013	30	176.00	0.0035	597.98	597.36	1.48	24.30	0.000	600.47	603.32	2.84	3.46	603.32	600.42	
3	7 402-401	402		0.487	1.161	10.0	2.38	13.9	6.14	5.30	0.90	0.44	1.04	5.54	0.013	30	176.00	0.0035	598.59	597.98	1.25	24.10	0.000	600.51	603.32	2.23	2.84	603.32	600.49	
3	8 403-402	403	(0.674	0.674	10.0	3.87	10.0	6.14	6.14	0.90	0.61	0.61	3.72	0.013	30	176.00	0.0035	599.20	598.59	1.15	24.11	0.000	600.54	603.32	1.62	2.23	603.32	600.53	
3	9 400D-400	A 400D		0.816	0.816	10.0	0.28	10.0	6.14	6.14	0.90	0.73	0.73	4.51	0.013	15	61.50	0.01	599.30	598.68	3.67	6.46	0.005	601.12	608.03	7.48	5.10	605.03	600.82	
4	0 200н-200	E 200H		0.816	0.816	10.0	0.31	10.0	6.14	6.14	0.90	0.73	0.73	4.51	0.013	15	68.50	0.01	598.87	598.18	3.67	6.46	0.005	601.14	607.58	7.46	5.15	604.58	600.81	
4	1 200A-200	200A		1.388	4.690	20.0	0.28	20.0	4.40	4.40	0.90	1.25	4.22	18.56	0.013	24	100.38	0.0075	595.96	595.21	5.91	19.57	0.007	599.57	602.93	4.96	3.49	600.69	598.89	
4	2 200B-200	A 200B		1.897	2.403	10.0	1.12	13.6	6.14	5.34	0.90	1.71	2.16	11.55	0.013	24	254.00	0.005	597.23	595.96	3.68	15.99	0.003	600.56	602.93	3.70	4.96	602.93	599.90	
4	3 200C-200	B 200C	(0.506	0.506	10.0	3.62	10.0	6.14	6.14	0.90	0.46	0.46	2.79	0.013	18	343.67	0.005	599.45	597.73	1.58	7.43	0.001	600.95	606.10	5.15	3.70	602.93	600.73	
4	4 200D-200	A 200D		0.899	0.899	10.0	0.24	10.0	6.14	6.14	0.90	0.81	0.81	4.96	0.013	15	59.17	0.01	597.30	596.71	4.04	6.46	0.006	600.21	605.93	7.37	4.96	602.93	599.86	
4	5 201-200	201		1.221	4.084	10.0	1.27	13.4	6.14	5.39	0.90	1.10	3.68	19.81	0.013	42	161.17	0.0035	594.94	594.38	2.06	59.49	0.000	599.43	600.69	2.25	2.82	600.69	599.37	
4	6 202-201	202		1.221	2.863	10.0	1.27	12.1	6.14	5.65	0.90	1.10	2.58	14.55	0.013	36	161.17	0.0035	595.51	594.94	2.06	39.44	0.000	599.51	600.69	2.19	2.75	600.69	599.43	
4	7 203-202	203		1.642	1.642	10.0	2.09	10.0	6.14	6.14	0.90	1.48	1.48	9.07	0.013	36	161.17	0.0035	596.07	595.51	1.28	39.44	0.000	599.58	600.69	1.62	2.19	600.69	599.55	
1 NO	nes: IDF File = 1	00051.004.1dt, Re	eturn Per	rioa = 25-	-yrs.																								Project	r⊪e: 004 STM.sws

Stormwater Studio 2019 v 3.0.0.15

Project Name: 004 STM

Stormwater Studio 2019 v 3.0.0.15

Project Name: 004 STM

Stormwater Studio 2019 v 3.0.0.15

Project Name: 004 STM

Stormwater Studio 2019 v 3.0.0.15

Project Name: 004 STM

Page 1 of 3

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

	MAP L	EGEND		MAP INFORMATION
Area of Int Soils Area of Int Soils Soils Soils Soils Soils Soils Soils Soils	MAP L terest (AOI) Area of Interest (AOI) Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features Blowout Borrow Pit	EGEND	Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features tures Streams and Canals	MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements.
x ◇ X ÷ ③ ∧ ≟ ∻ ◎ ○ > + ∵ = ◇ ◇ ⊗	Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot	Transport	ation Rails Interstate Highways US Routes Major Roads Local Roads Aerial Photography	 Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Butler County, Ohio Survey Area Data: Version 16, Sep 26, 2017 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Aug 26, 2014—Oct 26, 2014 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ee	Eel silt loam, 0 to 2 percent slopes, occasionally flooded	30.5	15.8%
EIA	Eldean loam, 0 to 2 percent slopes	5.4	2.8%
EIB2	Eldean loam, 2 to 6 percent slopes, eroded	5.6	2.9%
НоА	Henshaw silt loam, 0 to 2 percent slopes	79.1	41.0%
Pa	Patton silty clay loam, 0 to 2 percent slopes	71.3	37.0%
W	Water	0.0	0.0%
XeB2	Xenia silt loam, Southern Ohio Till Plain, 2 to 6 percent slopes, eroded	0.8	0.4%
Totals for Area of Interest		192.8	100.0%

DETENTION OUTFALL STRUCTURE (001)

N.T.S.

PROJECT	Brate Farm					
JOB #	160651.004		DESIG	ÎN	JMH	
DATE	8/12/2019	-	CHECI	Κ		
WATER QUA			=		INPUT FIELDS	
Method 2						1
WQv= C * P *	^r A / 12					
			RUNOFF COEFFICIEN	IT		
C =	0.645577838	; 	C = Rv = 0.05 + 0.9	9i		
P =	0.9		WHERE: i = IMPERVIO	US	RATIO	
A =	45.820	ACRES		: _ /A		
WOv =	2 22	AC ET			30 3255	
wqv -	2.22	ACTI		. –	45 826	
			i =		0.661753	
			P = Precipitation D	epti	h of 0.90- inches	
			*AREA TO INCLU	DE	OFFSITE DRAINAGE	l
			THEREF	FOR	E. WQV = 2.22 AC FT	
					OR, 96651.74 CF	
						4
			_			
BASIN STOR	RAGE VOLUME					
	1					
FI FV	VOLUME	WOV ELEV	Bottom	ו of	Detention: 593	
593	0.0000	593.62	Dottom			
			-	W	Qv ELEV= (WQv * △E/△V) + Bottom	ELEV
594	3.6046					
			N		l .	
	EFORDETEN				l	
**** DOUBLE	CHECK UNITS	S *****				
		-				
Q(avg) = WQ	v / Td	Q(max) = 2 * Q(avg)	Тс	d =	48 HOURS FOR DRY	
	l				24 HOURS FOR WET	
Q(avg) =	1.1187	CFS	WHERE:			
O(max) =	2 2272	CES	WQ	= v	WATER DETENTION VOLUME	
eq(max) -	2.2075		Q	g =	MAXIMUM FLOW RATE THROUGH TH	
			T_{c}	<i>d</i> =	WQv DRAIN TIME (24 TO 48 HOURS)	
			Ć	C =	0.6 ORIFICE COEFF.	
A = Q(max) /	C * (2 * g * H(m	ax))^0.5	`	g =	32.2 ft/ sec ²	
			H _{max}	= x	MAXIMUM HYDRAULIC HEAD	
					(WQv ELEV - Bottom ELEV)	
H(max) =	0.62		F	A =	$ORIFICE AREA (ft^{2})$	
			r	– ח	$(Q=CA(2gn)^{*}U.5)$	
			L		$(A=R^2 * \pi)$	
A <u>=</u>	0.5922	SQ FT AREA OF	REQUIRED ORIFIC	CE		
D =	10.42	IN			10" Circular	

Basin Model

Hydrology Studio v 3.0.0.12

Project Name:

08-12-2019

Hydrograph by Return Period

08-12-2019

Hydrology Sti	Hydrograph	h Hydrograph Name	Peak Outflow (cfs)							
No.	Туре		1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
1	NRCS Runoff	PreDev Site	16.39	23.70		34.21	42.78	54.50	63.88	73.37
2	NRCS Runoff	PostDev East	1.944	3.565		6.204	8.493	11.78	14.50	17.32
3	Pond Route	East Pond	0.168	0.346		0.727	1.169	1.938	2.669	3.468
4	NRCS Runoff	PostDev West	68.59	88.54		115.5	136.5	164.3	186.1	207.8
5	Junction	PostDev to West B	68.59	88.54		115.5	136.5	164.4	186.2	208.0
6	Pond Route	West Pond	1.266	1.791		2.255	2.560	2.947	3.211	3.459
7	NRCS Runoff	PostDev Undetained	0.913	1.670		2.854	3.868	5.307	6.493	7.720
8	Junction	Total PostDev	1.296	2.214		3.754	5.032	6.853	8.327	9.767

Hydrograph 1-yr Summary

08-12-2019

Hydrology Sti	udio v 3.0.0.12							00.12-2013
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	PreDev Site	16.39	12.78	146,311			
2	NRCS Runoff	PostDev East	1.944	12.35	13,396			
3	Pond Route	East Pond	0.168	18.45	11,208	2	603.18	7,592
4	NRCS Runoff	PostDev West	68.59	12.03	185,089			
5	Junction	PostDev to West B	68.59	12.03	196,297	3, 4		
6	Pond Route	West Pond	1.266	19.55	123,142	5	593.90	528,443
7	NRCS Runoff	PostDev Undetained	0.913	12.02	2,609			
8	Junction	Total PostDev	1.296	18.83	125,751	6, 7		

Hydrology Studio v 3.0.0.12

PreDev Site

08-12-2019

Tc by TR55 Worksheet

Hydrology Studio v 3.0.0.12

PreDev Site NRCS Runoff

Description				
Description	А	В	С	Tc (min)
Sheet Flow				
Description				
Manning's n	0.240	0.240	0.013	
Flow Length (ft)	100	50		
2-yr, 24-hr Precip. (in)	2.840000	2.840000	2.840000	
Land Slope (%)	.67	.67		
Travel Time (min)	23.46	13.47	0.00	36.93
Shallow Concentrated Flow				
Flow Length (ft)	2609			
Watercourse Slope (%)	.31			
Surface Description	Unpaved	Paved	Paved	
Average Velocity (ft/s)	.9			
Travel Time (min)	48.40	0.00	0.00	48.40
Channel Flow				
X-sectional Flow Area (sqft)				
Wetted Perimiter (ft)				
Channel Slope (%)				
Manning's n	0.013	0.013	0.013	
Velocity (ft/s)				
Flow Length (ft)				
Travel Time (min)	0.00	0.00	0.00	0.00
Total Travel Time				85.34 min

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev East

08-12-2019

Project Name:

Hydrograph Ty	pe = NRCS Runoff	Peak Flow	= 1.944 cfs			
Storm Frequen	ncy = 1-yr	Time to Peak	= 12.35 hrs			
Time Interval	= 1 min	Runoff Volume	= 13,396 cuft			
Drainage Area	= 9.35 ac	Curve Number	= 70*			
Tc Method	= TR55 (See Worksheet)	Time of Conc. (Tc)	= 39.79 min			
Total Rainfall	= 2.37 in	Design Storm	= Type II			
Storm Duration	n = 24 hrs	Shape Factor	= 484			
* Composite CN Wo	orksheet					
AREA (ac) CN 7.149 61 2.201 98 9.35 70	DESCRIPTION Pasture Type B/D Impervious Weighted CN Method Employed					
	On = 1.94 cfs					
2						
1.9						
1.8						
1.7 -						
1.6						
- 1.5 -						
1.4						
- 1.3 -						
1.2						
- 1.1 -						
- (cts)						
о 0.9-						
0.8						
0.7 -						
0.6						
0.5						
0.4						
0.3						
0.2						
0.1						
0						
0 1	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time (hrs)					

Tc by TR55 Worksheet

Hydrology Studio v 3.0.0.12

PostDev East NRCS Runoff

08-12-2019

Description				
Description	Α	В	С	Tc (min)
Sheet Flow				
Description				
Manning's n	0.240	0.240	0.013	
Flow Length (ft)	100	50		
2-yr, 24-hr Precip. (in)	2.840000	2.840000	2.840000	
Land Slope (%)	.67	.67		
Travel Time (min)	23.46	13.47	0.00	36.93
Shallow Concentrated Flow				
Flow Length (ft)	361			
Watercourse Slope (%)	1.71			
Surface Description	Unpaved	Paved	Paved	
Average Velocity (ft/s)	2.11			
Travel Time (min)	2.85	0.00	0.00	2.85
Channel Flow				
X-sectional Flow Area (sqft)				
Wetted Perimiter (ft)				
Channel Slope (%)				
Manning's n	0.013	0.013	0.013	
Velocity (ft/s)				
Flow Length (ft)				
Travel Time (min)	0.00	0.00	0.00	0.00
Total Travel Time				39.79 min

Hydrology Studio v 3.0.0.12

East Pond

Project Name:

Hydrograph Type	= Pond Route	Peak Flow	= 0.168 cfs			
Storm Frequency = 1-yr		Time to Peak	= 18.45 hrs			
Time Interval = 1 min		Hydrograph Volume	= 11,208 cuft			
Inflow Hydrograph = 2 - PostDev East		Max. Elevation	= 603.18 ft			
Pond Name	= East pond	Max. Storage	= 7,592 cuft			
Pond Routing by Storage Ind	lication Method	Center of mass	detention time = 9.38 hrs			
	Qp = 0.17 cfs					
2						
1.9						
1.8						
1.7						
-						
-						
-						
- 1 3 -						
1.0						
1.2						
1.1 - 						
≌ 1- σ -						
0.9-						
0.8						
0.7						
0.6						
0.5-						
0.4						
0.3	-					
0.2						
0						
0 2 4 6	5 8 10 12 14 16 18 20 22 24 26 28 Time (hrs)	30 32 34 36 38 4	0 42 44 46 48			
	PostDev East East Pond					

Pond Report

Hydrology Studio v 3.0.0.12

East pond

08-12-2019

Stage-Storage

Pond Report

Hydrology Studio v 3.0.0.12

East pond

08-12-2019

Stage-Discharge

		Orifices				
Culvert / Orifices	Culvert	1 2		3	Perforated Riser	
Rise, in	15				Perf. Rise, in	
Span, in	15				Perf. Span, in	
No. Barrels	1	1	1	1	No. Perforations	
Invert Elevation, ft	603.00	603.01	603.01	603.01	Invert Elevation, ft	
Orifice Coefficient, Co	.6	.6	.6	.6	Height, ft	
Length, ft	53.25				Orifice Coefficient, Co	
Barrel Slope, %	5					
N-Value, n	0.013					
Wairs	Picor*		Weirs		Ancillary	
vven s	KISEI	1	2	3	Ancillary	
Shape / Type	Circular	Rectangular	Rectangular	Rectangular	Exfiltration, in/hr	
Crest Elevation, ft						
Crest Length, ft						
Angle, deg						
Weir Coefficient, Cw						
*Routes through Culvert.		04 a ma D	:			
606 7		Stage-D	ischarge			-3
605-						-2
						2
(ft)						Stag
Elev						e (ft)
604-						
-						-
603-		4	5 6	5 7	8 9	+ + 0 10
	5	Disch	arge (cfs)	- 1		
	To	op of Pond —	Culvert	Total Q		

Hydrology Studio v 3.0.0.12

PostDev West

08-12-2019

Hydrograph Type	= NRCS Runoff	Peak Flow	= 68.59 cfs	
Storm Frequency	= 1-yr	Time to Peak	= 12.03 hrs	
Time Interval	= 1 min	Runoff Volume	= 185,089 cuft	
Drainage Area	= 36.253 ac	Curve Number	= 89.88*	
Tc Method	= User	Time of Conc. (Tc)	= 15.0 min	
Total Rainfall	= 2.37 in	Design Storm	= Type II	
Storm Duration	= 24 hrs	Shape Factor	= 484	
* Composite CN Workshee AREA (ac) CN DESCRI 2.915 61 Pasture 7.765 74 Pasture 15.024 98 Impervior 10.549 98 Impervior 36.253 90 Weighter	t IPTION Type B/D Type C/D Duss C/D Duss C/D d CN Method Employed			
	Qp = 68.59 ct	fs		
75				
-				
70-				
65				
60-				
- 55-				
-				
- 50-				
45				
(\$j) 40-				
α - 35-				
-				
25-				
20-				
15-				
10-				
5	/\			
0 1 2 3	3 4 5 6 7 8 9 10 11 12 13 Time (hrs	14 15 16 17 18 19 20 s)	21 22 23 24 25	

Hydrology Studio v 3.0.0.12

PostDev to West B

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

West Pond

08-12-2019

Pond Report

Hydrology Studio v 3.0.0.12

West Pond-Full Depth

08-12-2019

Stage-Storage

	0.1		N IN	A /	
ne	เกม	V I		IV	-
		•			_

	Descr Bottom Eleva Void	iption tion, ft	Input 590.00	Stag (ft)	e Elevatio	n Cont	our Area	Incr. Storage	Total S	torage
	Bottom Eleva Void	tion, ft	590.00		(11)	(sqft		(cuft)	(cuft)	
	Void	1 (0()		0.00	500.00	1		0.000	0.0	
	Volum	Voids (%) 100.00		1.00	590.00	1	02 949	120 022	120	00
	Volume Calc		Conio		592.00	12	122,949		245.891	
	Volum	e Caic	Conic		592.20	1;	33,599	26,240	272	,130
				3.00	593.00	15	53,933	114,905	387	,035←
				4.00	594.00	16	60,154	157,018	544	,053
				5.00	595.00	16	66,431	163,266	707	,319
				6.00	596.00	17	72,765	169,571	876	,890
				7.00	597.00	17	79,156	175,933	1,05	2,823
				8.00	598.00	18	35,602	182,351	1,23	5,174
				9.00	599.00	19	92,554	189,049	1,424	1,223
				10.0	600.00	20	01,212	196,847	1,62	1,070
				11.00) 601.00	21	12,209	206,666	1,82	7,736
						_				
						4 007 70	06 207	025		
						1,827,73	50 - 387	,035 =	/	
						1,440,70	01 cf abo			
					_					
601					5					T 11
600										10
599										[
597										
`596 -										- - 6
595										-5 (
594										4
593										-3
592										2
591-										+1
590 -	200000	400000	600000	800000 Total	1000000 Storage (cuft)	1200000	140000	00 1600000	1800000	10

Pond Report

Hydrology Studio v 3.0.0.12

West Pond-Full Depth

08-12-2019

Stage-Discharge

			Orifices				
Culvert / Orifices	Culvert	1*	2*	3	Orifice Plate	e	
Rise, in	12	10	6		Orifice Rise, in		
Span, in	12	10	24		Orifice Span, in		
No. Barrels	1	1	3		No. Orifices		
Invert Elevation, ft	593.00	593.00	594.00	0.00	Invert Elevation, ft		
Orifice Coefficient, Co	.6	.6	.6		Height, ft		
Length, ft	244.29				Orifice Coefficient, Co		
Barrel Slope, %	.25						
N-Value, n	0.013						
Wairs	Risor*		Weirs		Ancillary		
Wens	Nijel	1	2	3	Anomary		
Shape / Type	Box				Exfiltration, in/hr		
Crest Elevation, ft	595						
Crest Length, ft	8						
Angle, deg							
Weir Coefficient, Cw	3.3						
*Routes through Culvert.	*Routes through Culvert. Stage-Discharge						
601-						11	
600-						10	
599-						9	
598-						8	
597-						7	
- € 596-						6 Sta	
		_				ige (t	
						4	
593-						3	
592-						2	
591-						- 1	
590-						0	
0 1	2	Discha	उ arge (cfs)	4	5	6	
Tor	o of Pond Cu	ulvert — Rise	er — Orifice	Orifice	Total Q		
		-			-		

Pond Report

Hydrology Studio v 3.0.0.12

West Pond-Full Depth

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	0	Drifices, cf	s	Riser	Weirs, cfs		irs, cfs Pf Riser Ext		Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	590.00	0.000	0.000	0.000	0.000		0.000							0.000
1.00	591.00	120,022	0.000	0.000	0.000		0.000							0.000
2.00	592.00	245,891	0.000	0.000	0.000		0.000							0.000
2.20	592.20	272,130	0.000	0.000	0.000		0.000							0.000
3.00	593.00	387,035	0.000	0.000	0.000		0.000							0.000
4.00	594.00	544,053	1.389 oc	1.389	0.000		0.000							1.389
5.00	595.00	707,319	2.635 oc	0.405	2.230		0.000							2.635
6.00	596.00	876,890	3.381 oc	0.000	0.000		0.000							3.381
7.00	597.00	1,052,823	3.977 oc	0.000	0.000		0.000							3.977
8.00	598.00	1,235,174	4.494 oc	0.000	0.000		0.000							4.494
9.00	599.00	1,424,223	4.957 oc	0.000	0.000		0.000							4.957
10.00	600.00	1,621,070	5.381 oc	0.000	0.000		0.000							5.381
11.00	601.00	1,827,736	5.773 oc	0.000	0.000		0.000							5.773

08-12-2019

Suffix key: ic = inlet control, oc = outlet control, s = submerged weir

Hydrology Studio v 3.0.0.12

PostDev Undetained

08-12-2019

Hydrology Studio v 3.0.0.12

Total PostDev

08-12-2019

Project Name:

Hydrograph 2-yr Summary

00-12-2019	08- ⁻	12	-20)19
------------	------------------	----	-----	-----

Hydrology Stu	udio v 3.0.0.12							08-12-201
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	PreDev Site	23.70	12.77	204,927			
2	NRCS Runoff	PostDev East	3.565	12.33	21,288			
3	Pond Route	East Pond	0.346	15.82	18,809	2	603.27	11,091
4	NRCS Runoff	PostDev West	88.54	12.03	240,531			
5	Junction	PostDev to West B	88.54	12.03	259,340	3, 4		
6	Pond Route	West Pond	1.791	19.03	171,001	5	594.16	570,956
7	NRCS Runoff	PostDev Undetained	1.670	12.00	4,212			
8	Junction	Total PostDev	2.214	12.02	175,214	6, 7		

Hydrology Studio v 3.0.0.12

PreDev Site

08-12-2019

Hydrograph Type	= NRCS Runoff	Peak Flow	= 23.70 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.77 hrs
Time Interval	= 1 min	Runoff Volume	= 204,927 cuft
Drainage Area	= 47.37 ac	Curve Number	= 81*
Tc Method	= TR55 (See Worksheet)	Time of Conc. (Tc)	= 85.34 min
Total Rainfall	= 2.84 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Worksho AREA (ac) CN DESC 28.22 78 Row (19.151 85 Row (47.37 81 Weigh	ret RIPTION rops Type B/D rops Type C/D ted CN Method Employed		
	Qp = 23.70 cfs		
26			
24			
22-			
20			
18			
16			
(Claring (Cl			
0 12			
- 10-			
- 8-			
6			
4			
		6 17 19 10 20 21	
U I Z 3	Time (hrs)	0 17 10 13 20 21	22 23 24 23 20

Hydrology Studio v 3.0.0.12

PostDev East

08-12-2019

Hydrology Studio v 3.0.0.12

East Pond

Project Name:

08-12-2019

Stom Frequency = 2-yr Time to Peak = 15.82 hrs Time Interval = 1 min Hydrograph Volume = 18,809 cuft Inflow Hydrograph = 2 - PostDev East Max. Elevation = 603.27 ft Pond Name = East pond Max. Storage = 11,091 cuft For Routing by Storage Indication Method Center of mass detention time = 7.84 hrs Gp = 0.35 cfs 	Hydrograph Type	= Pond Route	Peak Flow	= 0.346 cfs
Time Interval = 1 min Hydrograph Volume = 18,809 cuft Inflow Hydrograph = 2 - PostDev East Max. Elevation = 603.27 ft Pond Name = East pond Max. Storage = 11,091 cuft Pond Routing by Storage Indication Method Center of mass detention time = 7.84 hrs Optimized To the storage of	Storm Frequency	= 2-yr	Time to Peak	= 15.82 hrs
Inflow Hydrograph = 2 - PostDev East Max. Elevation = 603.27 ft Pond Name = East pond Max. Storage = 11.091 cuft Center of mass detention time = 7.84 hrs Op = 0.35 cfs	Time Interval	= 1 min	Hydrograph Volume	= 18,809 cuft
Pond Name = East pond Max. Storage = 11,091 cuft Pand Routing by Storage indication Method Center of mass detention time = 7.84 hrs Op = 0.35 cfs Op = 0.35 cfs 0 <t< td=""><td>Inflow Hydrograph</td><td>= 2 - PostDev East</td><td>Max. Elevation</td><td>= 603.27 ft</td></t<>	Inflow Hydrograph	= 2 - PostDev East	Max. Elevation	= 603.27 ft
<page-header></page-header>	Pond Name	= East pond	Max. Storage	= 11,091 cuft
Qp = 0.35 cfs	Pond Routing by Storage Ind	ication Method	Center of mass	detention time = 7.84 hrs
Geodetic constraints of the second se		Qp = 0.35 cfs		
		a 10 12 14 16 18 20 22 24 26 28 5 Time (hrs) - PostDev East — East Pond		

Hydrology Studio v 3.0.0.12

PostDev West

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev to West B

08-12-2019

Hydrology Studio v 3.0.0.12

West Pond

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev Undetained

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

Total PostDev

08-12-2019

Project Name:

Hydrograph 5-yr Summary

08-12-2019

, ,,	ale i biolone							
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	PreDev Site	34.21	12.77	289,621			
2	NRCS Runoff	PostDev East	6.204	12.32	33,588			
3	Pond Route	East Pond	0.727	14.23	30,887	2	603.40	16,593
4	NRCS Runoff	PostDev West	115.5	12.03	317,010			
5	Junction	PostDev to West B	115.5	12.03	347,897	3, 4		
6	Pond Route	West Pond	2.255	19.37	232,801	5	594.57	637,014
7	NRCS Runoff	PostDev Undetained	2.854	12.00	6,733			
8	Junction	Total PostDev	3.754	12.02	239,535	6, 7		

Hydrology Studio v 3.0.0.12

PreDev Site

08-12-2019

Hydrograph Type	= NRCS Runoff	Peak Flow	= 34.21 cfs	
Storm Frequency	= 5-yr	Time to Peak	= 12.77 hrs	
Time Interval	= 1 min	Runoff Volume	= 289,621 cuft	
Drainage Area	= 47.37 ac	Curve Number	= 81*	
Tc Method	= TR55 (See Worksheet)	Time of Conc. (Tc)	= 85.34 min	
Total Rainfall	= 3.47 in	Design Storm	= Type II	
Storm Duration	= 24 hrs	Shape Factor	= 484	
* Composite CN WorksheetAREA (ac)CNDESCRIF28.2278Row Crop19.15185Row Crop47.3781Weighted	PTION Dos Type B/D Dos Type C/D I CN Method Employed			
	Qp = 34.21 cfs			
38				
36-				
34				
32				
30				
28				
26				
24				
22				
<u><u></u></u>				
σ 18-				
16				
14				
12				
10-				
8				
6				
4				
2				
0				
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 Time (hrs)	16 17 18 19 20 21	22 23 24 25 26	

Hydrology Studio v 3.0.0.12

PostDev East

08-12-2019

Hydrograph Ty	/pe = NRCS Runoff		Peak Flow	= 6.204 cfs
Storm Frequer	ncy = 5-yr		Time to Peak	= 12.32 hrs
Time Interval	= 1 min		Runoff Volume	= 33,588 cuft
Drainage Area	= 9.35 ac		Curve Number	= 70*
Tc Method	= TR55 (See Worksheet)		Time of Conc. (Tc)	= 39.79 min
Total Rainfall	= 3.47 in		Design Storm	= Type II
Storm Duration	n = 24 hrs		Shape Factor	= 484
* Composite CN Wo	orksheet			
AREA (ac) CN 7.149 61 2.201 98 9.35 70	DESCRIPTION Pasture Type B/D Impervious Weighted CN Method Employed			
	Qp	o = 6.20 cfs		
7				
6				
-				
5 -				
-				
4				
(cfsj				
0				
3-				
-				
2				
27				
-				
1				
-				
0				
0 1 2	2 3 4 5 6 7 8 9 10	11 12 13 14 15	16 17 18 19 20	21 22 23 24 25
		(IIIS)		

Hydrology Studio v 3.0.0.12

East Pond

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

PostDev West

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev to West B

08-12-2019

Hydrology Studio v 3.0.0.12

West Pond

08-12-2019

Hyd. No. 6

Project Name:

Hydrology Studio v 3.0.0.12

PostDev Undetained

08-12-2019

Hydrograph Type	= NRCS Runoff	Peak Flow	= 2.854 cfs
Storm Frequency	= 5-vr	Time to Peak	= 12.00 hrs
Time Interval	= 1 min	Runoff Volume	= 6,733 cuft
Drainage Area	= 1.985 ac	Curve Number	= 68.97*
Tc Method	= User	Time of Conc. (Tc)	= 10.0 min
Total Rainfall	= 3.47 in	Design Storm	= Type II
Storm Duration	= 24 hrs	Shape Factor	= 484
* Composite CN Worksheet			
AREA (ac) CN DESCRIF 1.155 61 Pasture 1 0.62 74 Pasture 1 0.126 98 Impervior 0.084 98 Impervior 1.985 69 Weighter	PTION Fype B/D Fype C/D Js B/D Js C/D I CN Method Employed		
2	Qp = 2.85 cfs		
3			
-			
2-			
(cfs)			
α			
1			
		16 17 18 19 20 2	1 22 23 24 25
0 1 2 3	Time (hrs)	10 17 10 17 20 2	.1 22 23 24 23

Hydrology Studio v 3.0.0.12

Total PostDev

08-12-2019

Project Name:

Hydrograph 10-yr Summary

08-12-2019

lydrology Sti	udio v 3.0.0.12							00 12 201
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	PreDev Site	42.78	12.75	359,021			
2	NRCS Runoff	PostDev East	8.493	12.30	44,226			
3	Pond Route	East Pond	1.169	13.72	41,410	2	603.52	21,410
4	NRCS Runoff	PostDev West	136.5	12.03	377,646			
5	Junction	PostDev to West B	136.5	12.03	419,055	3, 4		
6	Pond Route	West Pond	2.560	19.67	277,159	5	594.91	692,950
7	NRCS Runoff	PostDev Undetained	3.868	12.00	8,927			
8	Junction	Total PostDev	5.032	12.00	286,085	6, 7		

Hydrology Studio v 3.0.0.12

PreDev Site

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

PostDev East

08-12-2019

Hydrograph Type	e = NRCS Runoff	Peak Flow	= 8.493 cfs	
Storm Frequency	v = 10 -vr	Time to Peak	= 12.30 hrs	
Time Interval	= 1 min	Runoff Volume	= 44.226 cuft	
Drainage Area	= 9.35 ac	= 9.35 ac Curve Number = 70		
Tc Method	= TR55 (See Worksheet)	Time of Conc. (Tc)	= 39.79 min	
Total Rainfall	= 3.96 in	Design Storm	= Type II	
Storm Duration	= 24 hrs	Shape Factor	= 484	
* Composite CN Works AREA (ac) CN DE 7.149 61 Pa 2.201 98 Im 9.35 70 We	sheet ESCRIPTION asture Type B/D ipervious eighted CN Method Employed			
	Qn = 8.49	cfs		
9-				
-				
8-				
/-				
-				
6-				
-				
5-				
2 (cfs)				
4-				
-				
3				
2				
2				
1-				
		╽╷╷╷╷╷╴ <mark>┯┿┽┼┿┽┽┿┿</mark>		
0 1 2	3 4 5 6 7 8 9 10 11 12 1	3 14 15 16 17 18 19 20	21 22 23 24 25	
	Time (h	irs)		

Hydrology Studio v 3.0.0.12

East Pond

08-12-2019

Hyd. No. 3

Project Name:

Hydrology Studio v 3.0.0.12

PostDev West

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

PostDev to West B

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

West Pond

08-12-2019

Hyd. No. 6

Project Name:

Hydrology Studio v 3.0.0.12

PostDev Undetained

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

Total PostDev

08-12-2019

Project Name:

Hydrograph 25-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	PreDev Site	54.50	12.75	454,547			
2	NRCS Runoff	PostDev East	11.78	12.30	59,465			
3	Pond Route	East Pond	1.938	13.30	56,541	2	603.68	28,425
4	NRCS Runoff	PostDev West	164.3	12.03	459,136			
5	Junction	PostDev to West B	164.4	12.03	515,677	3, 4		
6	Pond Route	West Pond	2.947	19.93	330,710	5	595.37	770,512
7	NRCS Runoff	PostDev Undetained	5.307	12.00	12,082			
8	Junction	Total PostDev	6.853	12.00	342,792	6, 7		

Project Name:

08-12-2019

Hydrology Studio v 3.0.0.12

PreDev Site

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev East

08-12-2019

Hydrograph Type	= NRCS Runoff	Peak Flow	= 11.78 cfs	
Storm Frequency	= 25-yr	Time to Peak	= 12.30 hrs	
Time Interval	= 1 min	Runoff Volume	= 59,465 cuft	
Drainage Area	= 9.35 ac	Curve Number	= 70*	
Tc Method	= TR55 (See Worksheet)	Time of Conc. (Tc) = 39.79 min		
Total Rainfall	= 4.61 in	Design Storm = Type II		
Storm Duration	= 24 hrs	Shape Factor	= 484	
* Composite CN Works	neet			
AREA (ac)CNDESCRIPTION7.14961Pasture Type B/D2.20198Impervious9.3570Weighted CN Method Employed				
	$O_{D} = 11.78 cfs$			
13 -				
-				
12-				
11				
-				
10-				
9-				
-				
8-				
₆ 7				
- cf				
6				
5 -				
-				
4				
3				
2-				
1				
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time (hrs)				

Hydrology Studio v 3.0.0.12

East Pond

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev West

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev to West B

Hyd. No. 5

08-12-2019

Hydrology Studio v 3.0.0.12

West Pond

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev Undetained

08-12-2019

Hydrology Studio v 3.0.0.12

Total PostDev

08-12-2019

Project Name:

Hydrograph 50-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	PreDev Site	63.88	12.75	531,611			
2	NRCS Runoff	PostDev East	14.50	12.30	72,148			
3	Pond Route	East Pond	2.669	13.13	69,157	2	603.83	34,373
4	NRCS Runoff	PostDev West	186.1	12.03	523,686			
5	Junction	PostDev to West B	186.2	12.03	592,843	3, 4		
6	Pond Route	West Pond	3.211	20.18	367,372	5	595.74	833,581
7	NRCS Runoff	PostDev Undetained	6.493	12.00	14,718			
8	Junction	Total PostDev	8.327	12.00	382,090	6, 7		

Project Name:

08-12-2019

Hydrology Studio v 3.0.0.12

PreDev Site

08-12-2019

Hydrograph Type	= NRCS Runoff	Peak Flow	= 63.88 cfs					
Storm Frequency	= 50-yr	Time to Peak	= 12.75 hrs					
Time Interval	= 1 min	Runoff Volume = 531,611 cu						
Drainage Area	= 47.37 ac	Curve Number	= 81*					
Tc Method	= TR55 (See Worksheet)	Time of Conc. (Tc)	= 85.34 min					
Total Rainfall	= 5.12 in	Design Storm	= Type II					
Storm Duration	= 24 hrs	Shape Factor	= 484					
* Composite CN Worksheet AREA (ac) CN DESCRII 28.22 78 Row Cro 19.151 85 Row Cro 47.37 81 Weighted	: PTION ps Type B/D ps Type C/D d CN Method Employed							
	Qp = 63.88 cfs							
70-								
65-								
60	A							
- 55-								
50-								
45-								
40-								
σ 35-								
30-								
25-								
20								
15-								
10-								
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 1 Time (hrs)	16 17 18 19 20 21	22 23 24 25 26					

Hydrology Studio v 3.0.0.12

PostDev East

08-12-2019

Hydrograp	oh Type	= NRCS Run	off			Peak Flow	= 14.50 cfs						
Storm Fre	quency	= 50-yr			Time to Peak	= 12.30 hrs							
Time Inter	val	= 1 min	= 72,148 cuft										
Drainage	Area	= 9.35 ac			Curve Number	= 70*							
Tc Method	ł	= TR55 (See	Worksheet)			Time of Conc. (Tc)	= 39.79 min						
Total Rain	fall	= 5.12 in				Design Storm	= Type II						
Storm Du	ration	= 24 hrs				Shape Factor	= 484						
* Composite													
AREA (ac)CN7.149612.20198 9.3570													
$\Omega n = 14.50$ cfs													
16				чр – 1-									
-													
-													
14-													
13													
12													
11													
10-													
-													
(s)													
U 8- 0 -													
7													
6													
5													
4													
3													
2													
0	1 2 3	4 5 6	7 8 9	10 11 Ti	12 13 14 15 me (hrs)	5 16 17 18 19 20	21 22 23 24 25						

Hydrology Studio v 3.0.0.12

East Pond

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev West

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

70

60

50

40

30

20

10

0-

1111

דיד

PostDev to West B

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748 Time (hrs) East Pond — PostDev West — PostDev to West B

08-12-2019

Hydrology Studio v 3.0.0.12

West Pond

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev Undetained

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

Total PostDev

08-12-2019

Hydrograph 100-yr Summary

08-12-2019

Hydrology Stu	udio v 3.0.0.12							00 12 201.
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	PreDev Site	73.37	12.75	610,119			
2	NRCS Runoff	PostDev East	17.32	12.30	85,352			
3	Pond Route	East Pond	3.468	13.03	82,304	2	603.98	40,650
4	NRCS Runoff	PostDev West	207.8	12.03	588,638			
5	Junction	PostDev to West B	208.0	12.03	670,941	3, 4		
6	Pond Route	West Pond	3.459	20.65	401,421	5	596.12	898,292
7	NRCS Runoff	PostDev Undetained	7.720	12.00	17,469			
8	Junction	Total PostDev	9.767	12.00	418,889	6, 7		

Hydrology Studio v 3.0.0.12

PreDev Site

08-12-2019

Hydrograph Type	= NRCS Runoff	Peak Flow	= 73.37 cfs			
Storm Frequency	= 100-yr	Time to Peak	= 12.75 hrs			
Time Interval	= 1 min	Runoff Volume	= 610,119 cuft			
Drainage Area	= 47.37 ac	Curve Number	= 81*			
Tc Method	= TR55 (See Worksheet)	Time of Conc. (Tc)	= 85.34 min			
Total Rainfall	= 5.63 in	Design Storm	= Type II			
Storm Duration	= 24 hrs	Shape Factor	= 484			
* Composite CN Worksheet AREA (ac) CN DESCRII 28.22 78 Row Cro 19.151 85 Row Cro 47.37 81 Weighted	t PTION ps Type B/D ps Type C/D d CN Method Employed					
	Qp = 73.37 cfs					
75						
70-						
65-						
60-						
-						
50						
_ن 45-						
σ 40-						
-						
-						
30-						
25						
20-						
15-						
10-						
-						
5-						
			22 23 24 25 26			
0 1 2 3	Time (hrs)	10 17 10 13 20 21	22 23 24 23 20			

Hydrology Studio v 3.0.0.12

PostDev East

08-12-2019

Project Name:

Hydrograph Type = NRCS Runoff										Peak Flow					=	= 17.32 cfs															
Storm Frequency =					= 100-yr												Time to Peak					=	= 12	2.30) hr	s					
Time Interval = 1 min									Runoff Volume					=	= 85,352 cuft																
Drainage Area = 9.35 ac									Сι	irve	e N	um	ber			=	= 70*														
Tc Metho	bc		=	TR	55 ((See	e W	ork:	shee	et)									Tir	ne	of	Cor	nc.	(Tc))	=	= 39.79 min				
Total Rai	infall		=	= 5.6	3 in	ı													De	esig	gn S	Stor	m			=	= Ty	/pe	11		
Storm D	uratior	۱	=	= 24	hrs														Sh	nap	e F	act	or			=	= 48	84			
* Composit	e CN We	orkshe	et																												
AREA (ac)CNDESCRIPTION7.14961Pasture Type B/D2.20198Impervious9.3570Weighted CN Method Employed																															
Qp = 17.32 cfs																															
19																															
18-							_			_		-			+		_					_							+	_	
17															_																
16-															_																
- 15 -																													_		
14														Ш																	
12														Ц																	
10																															
12																															
- 10 ور - الح																															
α 9 -																															
8-																															
7						-																									
6						-	_																	_							
5 -													_																		
4													_	_	┞																
3-																															
2																											\square		\square	_	
- 1-																															
<u>_</u>																															
0	1 2	23		4 5	5	6	7	8	9	. 1	0	י 11	12 Tin	2 ne (13 [hrs]	. 1 14	1 -	15	16	1	7	18	. 19	9 2	20	21	22	2	23	24	25

Hydrology Studio v 3.0.0.12

East Pond

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev West

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev to West B

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

West Pond

08-12-2019

Hydrology Studio v 3.0.0.12

PostDev Undetained

08-12-2019

Project Name:

Hydrology Studio v 3.0.0.12

Total PostDev

08-12-2019

Precipitation Report

Hydrology Studio v 3.0.0.12

08-12-2019

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Active		~	✓		~	~	~	~	~
SCS Storms	> SCS Dir	mensionless S	storms						
SCS 6hr		1.73	2.08	0	2.56	2.93	3.43	3.84	4.24
Type I, 24-hr		2.37	2.84	0	3.47	3.96	4.61	5.12	5.63
Type IA, 24-hr		2.37	2.84	0	3.47	3.96	4.61	5.12	5.63
Type II, 24-hr	~	2.37	2.84	0	3.47	3.96	4.61	5.12	5.63
Type II FL, 24-hr		2.37	2.84	0	3.47	3.96	4.61	5.12	5.63
Type III, 24-hr		2.37	2.84	0	3.47	3.96	4.61	5.12	5.63
Synthetic Storms	> IDF-Bas	sed Synthetic	Storms						
1-hr		1.16	1.40	0	1.72	1.96	2.27	2.51	2.74
2-hr		1.34	1.64	0	2.06	2.39	2.84	3.21	3.57
3-hr		1.44	1.78	0	2.26	2.66	3.21	3.67	4.14
6-hr		1.60	2.01	0	2.61	3.14	3.91	4.59	5.30
12-hr		1.76	2.24	0	2.98	3.67	4.73	5.71	6.74
24-hr		1.92	2.49	0	3.39	4.28	5.70	7.07	8.56
Huff Distribution	> 1st Qua	urtile (0 to 6 hr	s)						
1-hr		1.16	1.39	0	1.71	1.95	2.27	2.50	2.74
2-hr		1.35	1.63	0	2.01	2.30	2.68	2.98	3.27
3-hr		1.44	1.74	0	2.14	2.46	2.88	3.22	3.56
6-hr		1.73	2.08	0	2.56	2.93	3.43	3.84	4.24
Huff Distribution	> 2nd Qu	artile (>6 to 12	hrs)						
8-hr		0	0	0	0	0	0	0	0
12-hr		2.05	2.46	0	3.01	3.44	4.00	4.45	4.90
Huff Distribution	> 3rd Qua	artile (>12 to 2	4 hrs)						
18-hr		0	0	0	0	0	0	0	0
24-hr		2.37	2.84	0	3.47	3.96	4.61	5.12	5.63
Custom Storms	> Custom	Storm Distrib	outions						
WQ Storm		0.90	0	0	0	0	0	0	0
Clermont Co Table I		2.40	2.90	0	3.60	4.10	4.70	5.10	5.60
My Custom Storm 3		0	0	0	0	0	0	0	0
My Custom Storm 4		0	0	0	0	0	0	0	0
My Custom Storm 5		0	0	0	0	0	0	0	0
My Custom Storm 6		0	0	0	0	0	0	0	0
My Custom Storm 7		0	0	0	0	0	0	0	0
My Custom Storm 8		0	0	0	0	0	0	0	0
My Custom Storm 9		0	0	0	0	0	0	0	0
My Custom Storm 10		0	0	0	0	0	0	0	0