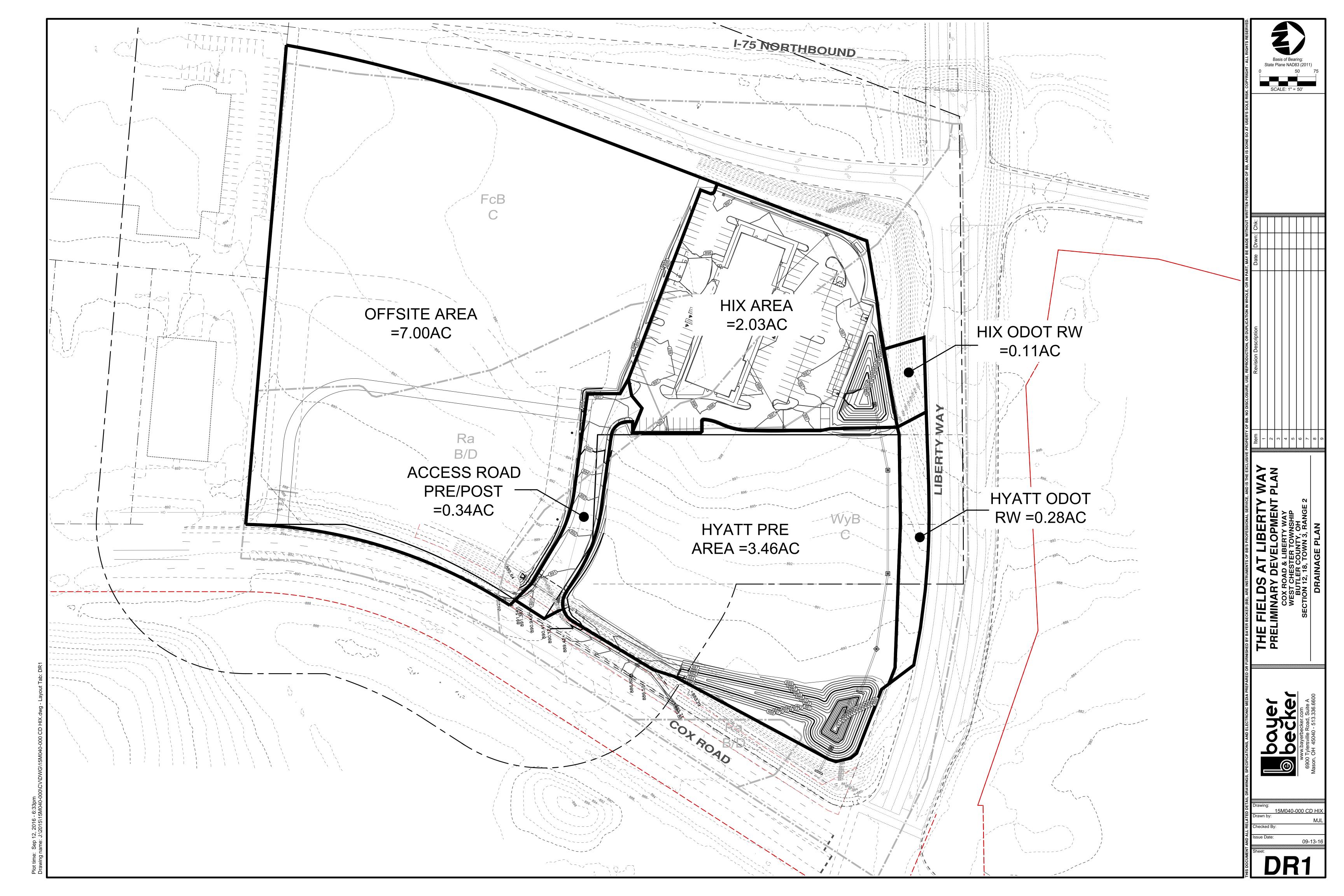
SUMMARY OF DATA

Method of Hydrograph Development: TR-55

Software: Autodesk Storm and Sanitary Stand Alone

Design Criteria: Control the post development storms of a frequency between one year and the critical storm so as to be equal to or less than the pre-development peak runoff rate for a 24 hour-one year frequency storm. Control post development storms less frequent than the critical storm so as to be equal to or less than the pre-development peak runoff rate for the next most frequent storm event.


	Drainage Area	CN	Tc	Q1	Q1	Q25	Q50	Q100
Drainage Area Descriptions	(Acres)		(Mins)	(cfs)	(ft ³)	(cfs)	(cfs)	(cfs)
Pre Developed Areas								
HIX Site	2.03	73.6	14.85	0.93 <mark>Se</mark>	<mark>e 6</mark> 3,115	5.64	6.36	7.36
Access Drive	0.34	72.8	19.11	0.13 <mark>See</mark>	26 502	0.84	0.95	1.10
Hyatt Site	3.46	65.0	16.50	0.38		6.49	7.54 <mark>Se</mark>	e 32 8.99 See
Post Developed Areas								
HIX Site	2.03	92.0	12.00	4.12 <mark>Se</mark>	e 710,773	10.93 <mark>See</mark>	10 11.82 <mark>Se</mark>	e 1413.01 See
Access Drive	0.34	98.0	12.00	0.88 <mark>See</mark>	<mark>27</mark> 2,511	1.97	2.12 ^{See}	31 2.31 See
Offsite Areas								
Lot 1 Offsite	7.00	76.0	23.25	3.37		17.97	20.18 <mark>See</mark>	3323.18 See 3
HIX ODOT RW	0.11	65.0	12.00	0.01		0.24 <mark>See</mark>	11 0.28 See	e 15 0.33 See
Hyatt ODOT RW	0.28	65.0	12.00	0.04		0.61	0.71 <mark>Se</mark>	e 34 0.84 See

HIX Critical Storm = 25 yr.

HIX Allowable Release Rate= Q1 HIX Site Pre Developed +	
Q25 HIX ODOT RW	0.93 + 0.24 = 1.17 CFS
See 5	

Access Rd. Critical Storm = 50 yr.

Access Rd. Allowable Release Rate=	
Q50 Hyatt Pre Developed +	7.54 + 1.02 + 0.13 +
Q50 HIX +	20.18 + 0.71 =
Q1 Access Drive Pre Developed + Q50	29.58CFS
Lot 1 Offsite +	See 24
Q50 Hyatt ODOT RW	

Drainage Area De	scription:			Job #:	15M040.000
HIX Site Pre-Develop	bed			Initials:	BJS
				Date:	9/13/2016
				Revised:	
Drainage Area =	2.03 Acres				
Soil Types:	22 %	Type 'B'		0.5 acres	
	78 %	Type 'C'		1.6 acres	
Land Use:	Woods - Grass		2.0 Acres		

Composite Runoff Curve Number:

Project:

Ground Cover	Soil Type	CN	Soil Type %	Land Use %	CN*Soil %*Land %
Woods - Grass	В	65	22	100.0	14.4
Woods - Grass	С	76	78	100.0	59.1
			Comp	oosite CN =	73.6

Time of Concentration:

Sheet Flow:

Length = 72

Slope(ft/ft) = 0.0108

Manning's, n = 0.24

0.248 hr

Тс

Tc = 0.25 hr 15 min

Bayer-Becker, Inc.

Project: _____ The Fields at Liberty Way

Drainage Area De	scription:			Job #:	15M040.000
HIX Site Post-Develo	ped			Initials:	BJS
				Date:	9/13/2016
				Revised:	
Drainage Area =	2.03 Acres				
Soil Types:	22 %	Type 'B'		0.5 acres	
	78 %	Type 'C'		1.6 acres	
Land Use:	Impervious		1.6 Acres		
	Open Space - Good	().4 Acres		

Composite Runoff Curve Number:

Ground Cover	Soil Type	CN	Soil Type %	Land Use %	CN*Soil %*Land %
Impervious	В	98	22	77.9	16.91
Impervious	С	98	78	77.9	59.39
Open Space - Good	В	61	22	22.1	2.99
Open Space - Good	С	74	78	22.1	12.75

Composite CN = 92.0

Time of Concentration:

Тс

Tc =	12.00 <i>min</i>
10	12.00 11111
	12 min

SUMMARY OF DATA

Method of Hydrograph Development: TR-55

Software: Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2011

Design Criteria: Control the post development storms of a frequency between one year and the critical storm so as to be equal to or less than the pre-development peak runoff rate for a 24 hour one year frequency storm.

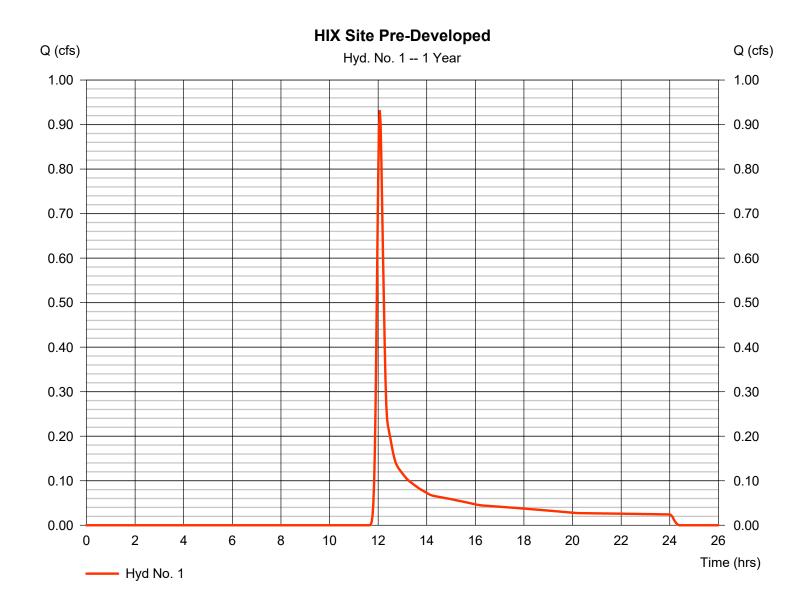
100YF	HIX Basin 100YR=894.77 T/Dike=898.00		Outlet: 24" Pipe @ 0.58% 4" Orifice Inv=887.06 T/Grate @ 895.06, Spillway = 896.82		
Frequency	Inflow	Outflow	Sto	rage	Elevation
(yr)	(cfs)	(cfs)	(ft ³)	(ac-ft)	(ft)
1	4.13	0.78	3,821	0.09	890.74
5	7.84	0.95	8,498	0.20	892.46
10	9.30	1.01	10,504	0.24	893.10
25	11.16 See 12	1.07 See 13	13,153	0.30	893.89
50	12.09 See 16	1.10 See 17	14,515	0.33	894.27
100	13.34 See 20	1.14 See 21	16,377	0.38	894.77

Release Rate - Basin Critical Storm = 25 yr					
(yr)	(cfs)	(cfs)			
1	1.17	0.78			
5	1.17	0.95			
10	1.17	1.01			
25	1.17	1.07 See 13			
50	5.92	1.10 See 17			
100	6.69	1.14 See 21			

lote: Water Quality to be rovided by Hyatt House pond.

See 25

AS-BUILT

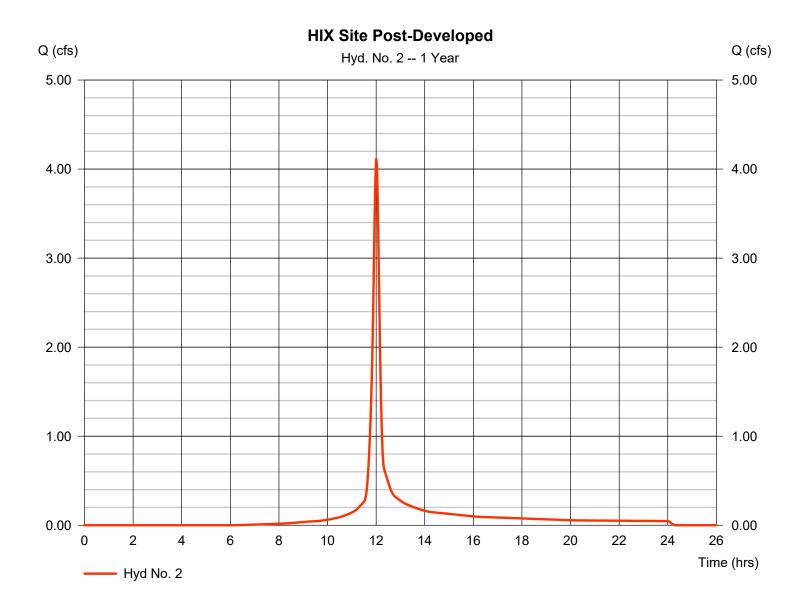

Spillw	Spillway		
Q ₁₀₀ =13.34			
Spillway Invert	896.82		
100 Year Weir Flow	897.10		
Top of Dike Elevation	898.00		
Freeboard	Freeboard		
Spillway Side Slope	3:1		
Velocity	1.58		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 1

HIX Site Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.932 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 3,115 cuft
Drainage area	= 2.030 ac	Curve number	= 73.6
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 2

HIX Site Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 4.120 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 10,773 cuft
Drainage area	= 2.030 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

7

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Pond No. 2 - HIX Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 887.06 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	887.06	00	0	0
1.94	889.00	1,148	742	742
2.94	890.00	1,873	1,496	2,238
3.94	891.00	2,440	2,150	4,388
4.94	892.00	2,904	2,668	7,056
5.94	893.00	3,314	3,106	10,163
6.94	894.00	3,412	3,363	(13,525
7.94	895.00	4,004	3,704	(17,229,
8.94	896.00	5,677	4,816	22,045

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	4.00	0.00	Crest Len (ft)	= 8.00	30.00	0.00	0.00
Span (in)	= 24.00	0.00	4.00	0.00	Crest El. (ft)	= 895.06	896.82	0.00	0.00
No. Barrels	= 1	0	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert EI. (ft)	= 886.96	0.00	887.06	0.00	Weir Type	= 1	Broad		
Length (ft)	= 92.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.58	0.00	0.00	n/a					
N-Value	= .013	.013	.015	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

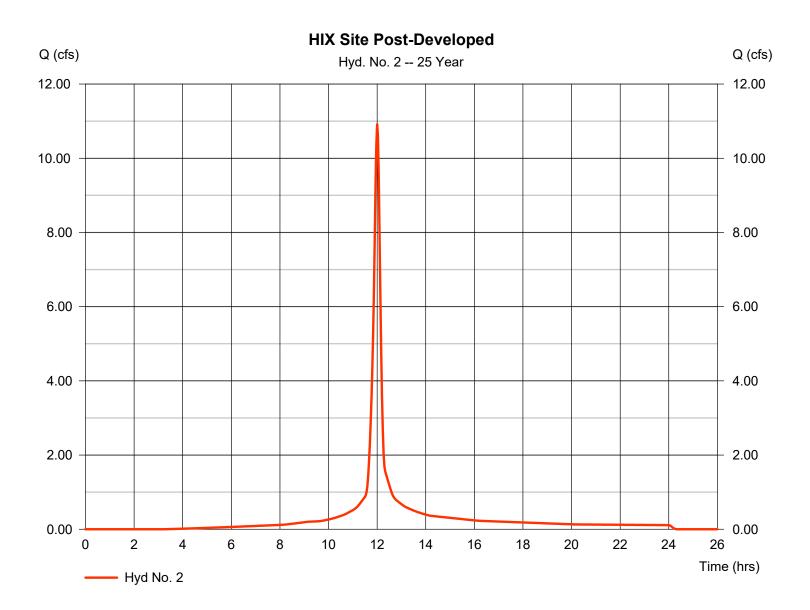
Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	887.06	0.00		0.00		0.00	0.00					0.000
0.00	74	887.25	0.00 0.08 ic		0.00 0.08 ic		0.00	0.00					0.000
0.19		887.45	0.08 ic 0.20 ic		0.08 ic 0.20 ic		0.00	0.00					0.080
	148 223	887.64	0.20 lc 0.27 ic		0.20 ic 0.27 ic		0.00	0.00					0.196
0.58													
0.78	297	887.84	0.35 ic		0.33 ic		0.00	0.00					0.328
0.97	371	888.03	0.38 ic		0.38 ic		0.00	0.00					0.377
1.16	445	888.22	0.44 ic		0.42 ic		0.00	0.00					0.420
1.36	520	888.42	0.48 ic		0.46 ic		0.00	0.00					0.458
1.55	594	888.61	0.52 ic		0.49 ic		0.00	0.00					0.492
1.75	668	888.81	0.52 ic		0.52 ic		0.00	0.00					0.524
1.94	742	889.00	0.56 ic		0.56 ic		0.00	0.00					0.555
2.04	892	889.10	0.60 ic		0.57 ic		0.00	0.00					0.569
2.14	1,041	889.20	0.60 ic		0.58 ic		0.00	0.00					0.585
2.24	1,191	889.30	0.60 ic		0.60 ic		0.00	0.00					0.599
2.34	1,341	889.40	0.64 ic		0.61 ic		0.00	0.00					0.612
2.44	1,490	889.50	0.64 ic		0.63 ic		0.00	0.00					0.627
2.54	1,640	889.60	0.64 ic		0.64 ic		0.00	0.00					0.640
2.64	1,789	889.70	0.69 ic		0.65 ic		0.00	0.00					0.653
2.74	1,939	889.80	0.69 ic		0.67 ic		0.00	0.00					0.666
2.84	2,088	889.90	0.69 ic		0.68 ic		0.00	0.00					0.679
2.94	2,238	890.00	0.69 ic		0.69 ic		0.00	0.00					0.691
3.04	2,453	890.10	0.73 ic		0.70 ic		0.00	0.00					0.703
3.14	2,668	890.20	0.73 ic		0.72 ic		0.00	0.00					0.716
3.24	2,883	890.30	0.73 ic		0.73 ic		0.00	0.00					0.728
3.34	3,098	890.40	0.74 ic		0.74 ic		0.00	0.00					0.739
3.44	3,313	890.50	0.78 ic		0.75 ic		0.00	0.00					0.750
3.54	3,528	890.60	0.78 ic		0.76 ic		0.00	0.00					0.762
3.64	3,743	890.70	0.78 ic		0.77 ic		0.00	0.00					0.773
3.74	3,958	890.80	0.78 ic		0.78 ic		0.00	0.00					0.785
3.84	4,173	890.90	0.79 ic		0.79 ic		0.00	0.00					0.795
3.94	4,388	891.00	0.84 ic		0.81 ic		0.00	0.00					0.806
4.04	4,655	891.10	0.84 ic		0.82 ic		0.00	0.00					0.817
4.14	4,922	891.20	0.84 ic		0.83 ic		0.00	0.00					0.827
4.24	5,188	891.30	0.84 ic		0.84 ic		0.00	0.00					0.838
	2, 200										Continue		4

8

Continues on next page ...

HIX Pond Stage / Storage / Discharge Table

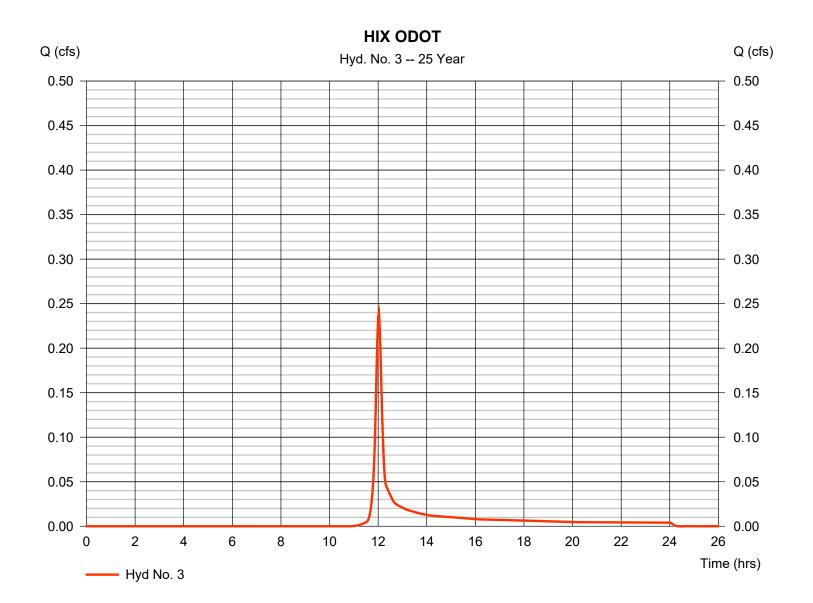

Staye /	Storage	Discharge	lable										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.20	5,230	891.20	0.73 ic		0.71 ic		0.00	0.00					0.711
3.30	5,512	891.30	0.73 ic		0.72 ic		0.00	0.00					0.723
3.40	5,793	891.40	0.73 ic		0.73 ic		0.00	0.00					0.735
3.50	6,075	891.50	0.75 ic		0.75 ic		0.00	0.00					0.746
3.60	6,357	891.60	0.78 ic		0.76 ic		0.00	0.00					0.757
3.70	6,639	891.70	0.78 ic		0.77 ic		0.00	0.00					0.769
3.80	6,921	891.80	0.78 ic		0.78 ic		0.00	0.00					0.780
3.90	7,202	891.90	0.79 ic		0.79 ic		0.00	0.00					0.791
4.00	7,484	892.00	0.84 ic		0.80 ic		0.00	0.00					0.801
4.10	7,811	892.10	0.84 ic		0.81 ic		0.00	0.00					0.812
4.20	8,137	892.20	0.84 ic		0.82 ic		0.00	0.00					0.823
4.30	8,464	892.30	0.84 ic		0.83 ic		0.00	0.00					0.834
4.40 4.50	8,790 9,117	892.40 892.50	0.84 ic 0.89 ic		0.84 ic 0.85 ic		0.00 0.00	0.00 0.00					0.843 0.853
4.50	9,117	892.60	0.89 ic 0.89 ic		0.85 ic 0.86 ic		0.00	0.00					0.853
4.00	9,443	892.70	0.89 ic		0.80 ic 0.87 ic		0.00	0.00					0.874
4.80	10,097	892.80	0.89 ic		0.88 ic		0.00	0.00					0.884
4.90	10,423	892.90	0.89 ic		0.89 ic		0.00	0.00					0.893
5.00	10,750	893.00	0.90 ic		0.90 ic		0.00	0.00					0.902
5.10	11,106	893.10	0.95 ic		0.91 ic		0.00	0.00					0.912
5.20	11,462	893.20	0.95 ic		0.92 ic		0.00	0.00					0.922
5.30	11,818	893.30	0.95 ic		0.93 ic		0.00	0.00					0.931
5.40	12,175	893.40	0.95 ic		0.94 ic		0.00	0.00					0.941
5.50	12,531	893.50	0.95 ic		0.95 ic		0.00	0.00					0.950
5.60	12,887	893.60	0.96 ic		0.96 ic		0.00	0.00					0.958
5.70	13,244	893.70	1.01 ic		0.97 ic		0.00	0.00					0.967
5.80	13,600	893.80	1.01 ic		0.98 ic		0.00	0.00					0.976
5.90	13,956	893.90	1.01 ic		0.99 ic		0.00	0.00					0.985
6.00	14,312	894.00	1.01 ic		0.99 ic		0.00	0.00					0.994
6.10	14,699	894.10	1.01 ic		1.00 ic		0.00	0.00					1.003
6.20	15,085	894.20	1.01 ic		1.01 ic		0.00	0.00					1.011
6.30	15,471	894.30	1.02 ic		1.02 ic		0.00	0.00					1.020
6.40	15,857	894.40	1.07 ic 1.07 ic		1.03 ic		0.00	0.00					1.028 1.037
6.50 6.60	16,243 16,630	894.50 894.60	1.07 ic 1.07 ic		1.04 ic 1.05 ic		0.00 0.00	0.00 0.00					1.037
6.70	17,016	894.00	1.07 ic		1.05 ic		0.00	0.00					1.045
6.80	17,402	894.80	1.07 ic		1.06 ic		0.00	0.00					1.062
6.90	17,788	894.90	1.07 ic		1.07 ic		0.00	0.00					1.070
7.00	18,175	895.00	1.08 ic		1.08 ic		0.00	0.00					1.078
7.10	18,628	895.10	1.92 ic		1.07 ic		0.84	0.00					1.916
7.20	19,082	895.20	3.52 ic		1.06 ic		2.38	0.00					3.446
7.30	19,536	895.30	5.46 ic		1.05 ic		4.38	0.00					5.430
7.40	19,990	895.40	7.80 ic		1.04 ic		6.74	0.00					7.780
7.50	20,444	895.50	10.45 ic		1.03 ic		9.42	0.00					10.45
7.60	20,898	895.60	13.39 ic		1.01 ic		12.38	0.00					13.39
7.70	21,352	895.70	16.53 oc		0.93 ic		15.60	0.00					16.53
7.80	21,806	895.80	19.89 oc		0.83 ic		19.06	0.00					19.89
7.90	22,260	895.90	23.41 oc		0.67 ic		22.74	0.00					23.41
8.00	22,714	896.00	27.01 oc		0.41 ic		26.60 s	0.00					27.01
8.10	23,215	896.10	27.82 oc		0.34 ic		27.48 s	0.00					27.82
8.20 8.30	23,716 24,218	896.20 896.30	28.30 oc 28.69 oc		0.30 ic 0.27 ic		28.00 s 28.42 s	2.47 6.97					30.77 35.66
8.40	24,210	896.40	29.01 oc		0.27 ic 0.24 ic		28.77 s	12.81					41.82
8.50	25,221	896.50	29.29 oc		0.24 ic 0.22 ic		29.07 s	12.01					49.02
8.60	25,722	896.60	29.55 oc		0.22 ic		29.35 s	27.57					57.12
8.70	26,224	896.70	29.79 oc		0.19 ic		29.61 s	36.24					66.03
8.80	26,725	896.80	30.02 oc		0.17 ic		29.85 s	45.66					75.68
8.90	27,227	896.90	30.24 oc		0.16 ic		30.07 s	55.79					86.02
9.00	27,728	897.00	30.45 oc		0.15 ic		30.29 s	66.60					97.04
9.10	28,229	897.10	30.65 oc		0.14 ic		30.50 s	78.00					108.64
9.20	28,731	897.20	30.84 oc		0.13 ic		30.71 s	89.98					120.82
9.30	29,232	897.30	31.03 oc		0.13 ic		30.90 s	102.53					133.56
9.40	29,734	897.40	31.22 oc		0.12 ic		31.09 s	115.60					146.81
9.50	30,235	897.50	31.41 oc		0.11 ic		31.28 s	129.19					160.59
9.60	30,737	897.60	31.59 oc		0.11 ic		31.47 s	143.28					174.85
9.70	31,238	897.70	31.76 oc		0.10 ic		31.65 s	157.84					189.59
9.80	31,740	897.80	31.94 oc		0.10 ic		31.83 s	172.86					204.79
9.90	32,241	897.90	32.12 oc		0.09 ic		32.00 s	188.34					220.43
10.00	32,743	898.00	32.29 oc		0.09 ic		32.19 s	204.28					236.56

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 2

HIX Site Post-Developed

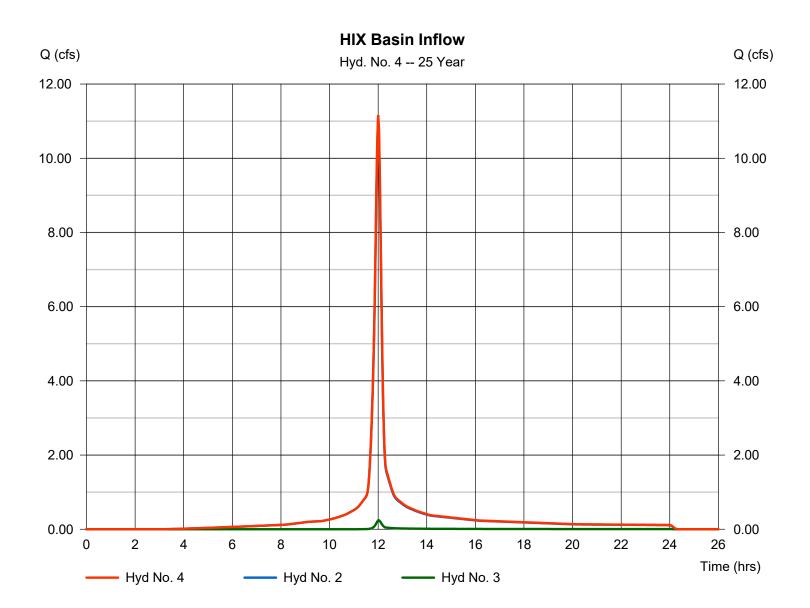
Hydrograph type	= SCS Runoff	Peak discharge	= 10.93 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 29,963 cuft
Drainage area	= 2.030 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 3

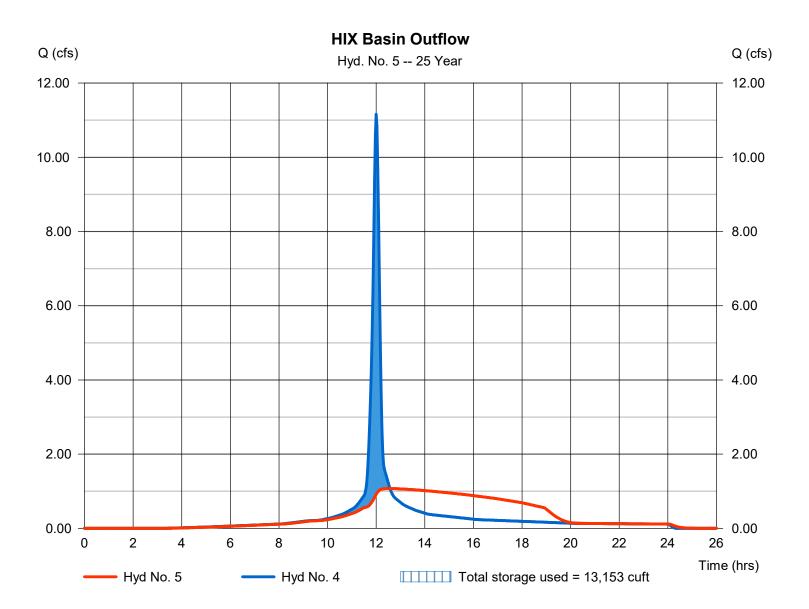
HIX ODOT


Hydrograph type	= SCS Runoff	Peak discharge	= 0.239 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 640 cuft
Drainage area	= 0.110 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.85 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 4

HIX Basin Inflow

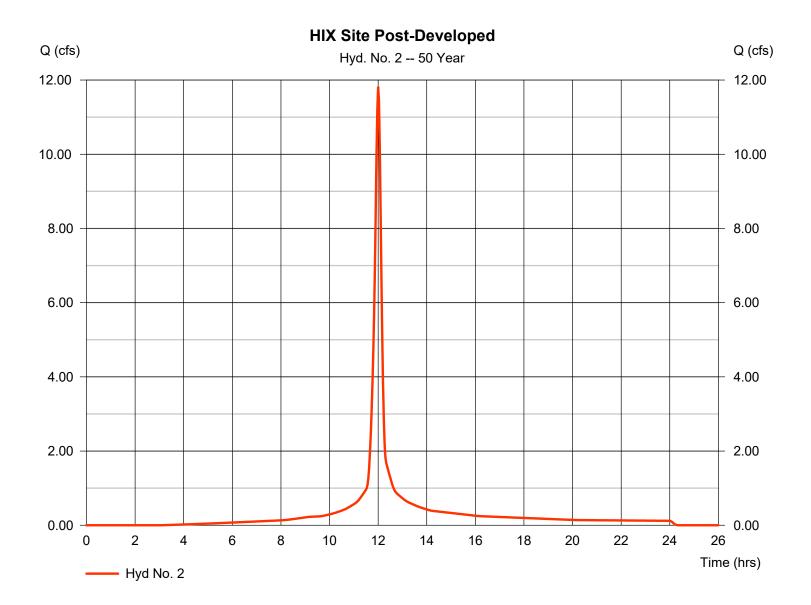

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No. 5

HIX Basin Outflow

Hydrograph type	= Reservoir	Peak discharge	= 1.072 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.57 hrs
Time interval	= 2 min	Hyd. volume	= 30,602 cuft
Inflow hyd. No.	= 4 - HIX Basin Inflow	Max. Elevation	= 893.89 ft
Reservoir name	= HIX Pond	Max. Storage	= 13,153 cuft

Storage Indication method used.

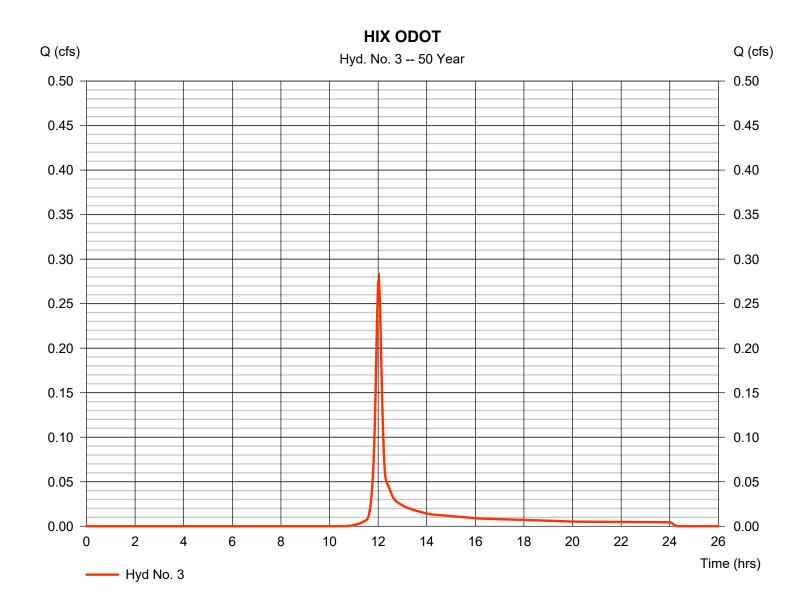

Tuesday, 08 / 22 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 2

HIX Site Post-Developed

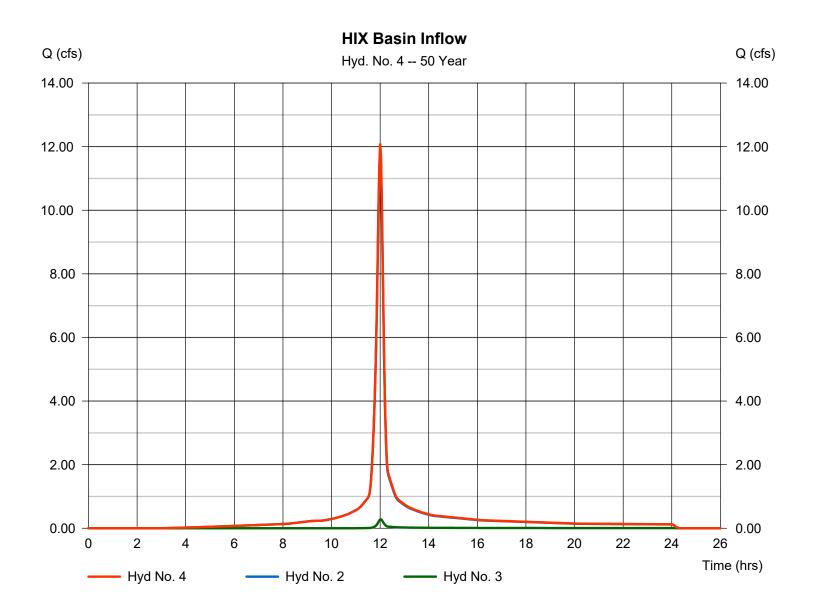
Hydrograph type	= SCS Runoff	Peak discharge	= 11.82 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 32,561 cuft
Drainage area	= 2.030 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 3

HIX ODOT

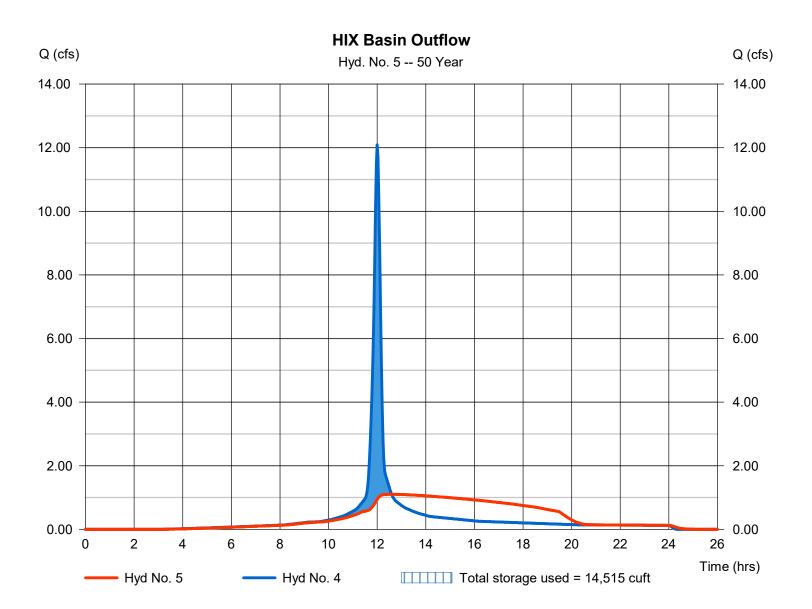

Hydrograph type	= SCS Runoff	Peak discharge	= 0.277 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 736 cuft
Drainage area	= 0.110 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 4

HIX Basin Inflow

16


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

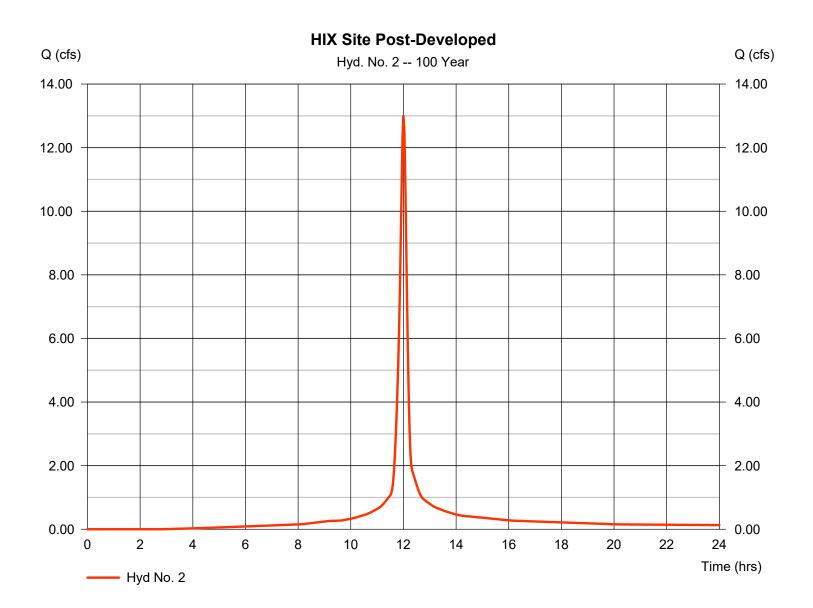
Hyd. No. 5

HIX Basin Outflow

Hydrograph type	= Reservoir	Peak discharge	= 1.102 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.60 hrs
Time interval	= 2 min	Hyd. volume	= 33,296 cuft
Inflow hyd. No.	= 4 - HIX Basin Inflow	Max. Elevation	= 894.27 ft
Reservoir name	= HIX Pond	Max. Storage	= 14,515 cuft

Storage Indication method used.

17

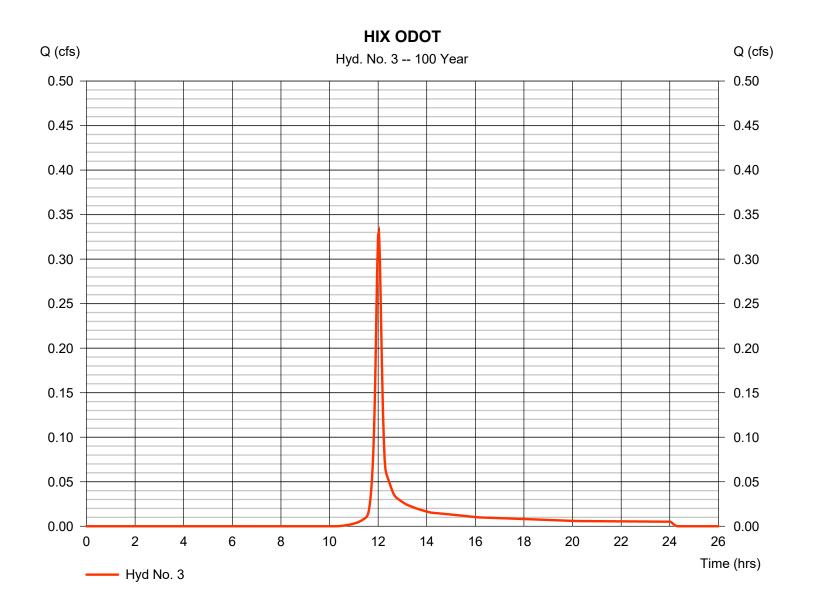

Tuesday, 08 / 22 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 2

HIX Site Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 13.01 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 36,060 cuft
Drainage area	= 2.030 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

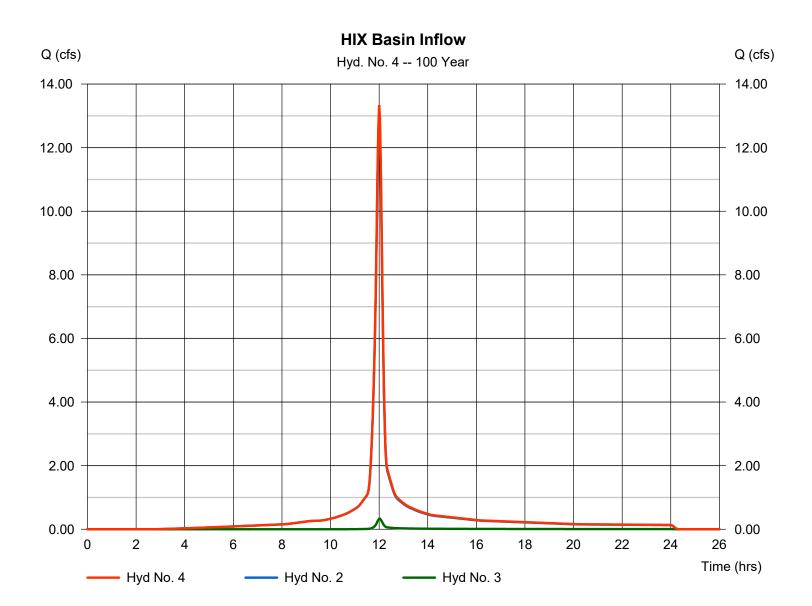


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 3

HIX ODOT

Hydrograph type	= SCS Runoff	Peak discharge	= 0.330 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 871 cuft
Drainage area	= 0.110 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		·	

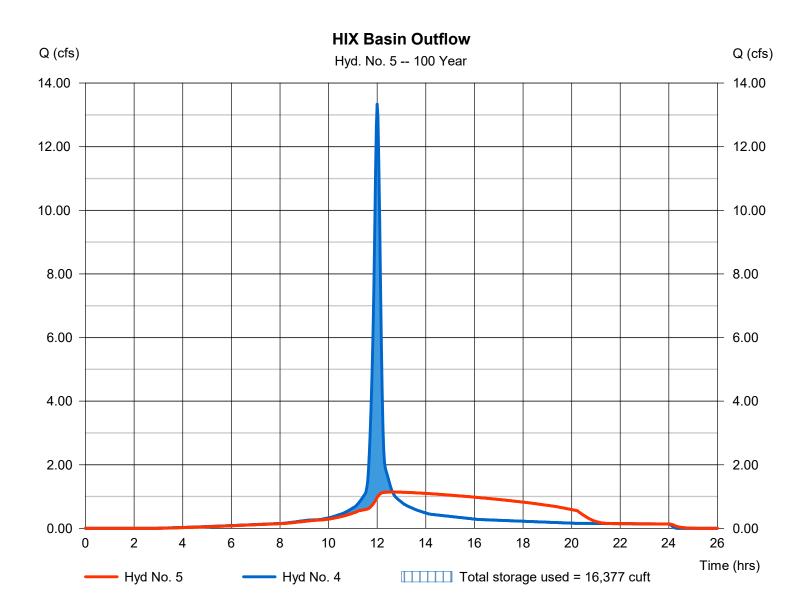


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 4

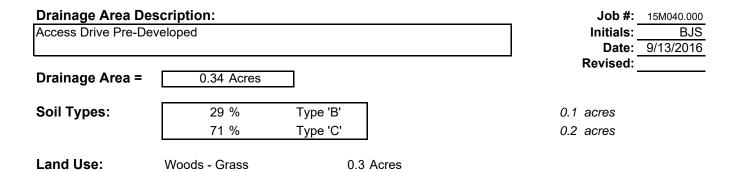
HIX Basin Inflow

Hydrograph type	= Combine	Peak discharge	= 13.34 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 36,931 cuft
Inflow hyds.	= 2, 3	Contrib. drain. area	= 2.140 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No. 5

HIX Basin Outflow


Hydrograph type	= Reservoir	Peak discharge	= 1.141 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.63 hrs
Time interval	= 2 min	Hyd. volume	= 36,930 cuft
Inflow hyd. No.	= 4 - HIX Basin Inflow	Max. Elevation	= 894.77 ft
Reservoir name	= HIX Pond	Max. Storage	= 16,377 cuft

Storage Indication method used.

21

Tuesday, 08 / 22 / 2017

Composite Runoff Curve Number:

Ground Cover

Project:

Woods - Grass	В	65	29	100.0	19.12
Woods - Grass	С	76	71	100.0	53.65
			Com	posite CN =	72.8
Time of Concentration:					
Sheet Flow:					Тс
Length = 100	Slope(ft/ft) =	0.0175		Manning's, n = 0.2	4 0.265 hr

CN

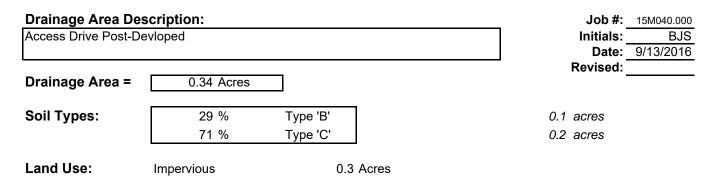
Soil Type

Shallow Concentrated Flow:

Length = 191	Slope(ft/ft) = 0.042	Velocity (fps) = 1	0.053 hr
--------------	----------------------	--------------------	-----------------

Soil Type %

Land Use %


Channel Flow:

Tc =	0.32	hr
	19	min

CN*Soil %*Land %

Project:

The Fields at Liberty Way

Composite Runoff Curve Number:

Ground Cover	Soil Type	CN	Soil Type %	Land Use %	CN*Soil %*Land %
Impervious	В	98	29	100.0	28.82
Impervious	С	98	71	100.0	69.18
			Com	oosite CN =	98.0

Time of Concentration:

Тс

Tc = 12.00 min 12 min

See 25

24

100YI	t Basin R=885.78 e=889.00	Outlet: 24" Pipe @ 1.09% 2" WQ Orifice Inv=881.96, 30" Orifice Inv=883.46 T/Grate @ 886.86, Spillway = 887.00			
Frequency	Inflow	Outflow	Sto	rage	Elevation
(yr)	(cfs)	(cfs)	(ft^3)	(ac-ft)	(ft)
1	5.05	2.93	16,073	0.37	884.12
5	15.62	10.85	22,725	0.52	884.82
10	20.46	14.17 See 36		0.59	885.11
25	27.03	18.01 See 42	30,125	0.69	885.51
50	30.47	19.82	32,606	0.75	885.74
100	35.18	21.77	36,300	0.83	886.06

	Release Rate - Basin	
	Critical Storm = 50 yr	
Storm Frequency	Pre-Developed Allowable Release Rate	Post-Developed Release Rate
(yr)	(cfs)	(cfs)
1	4.57	2.93
5	14.87	10.85
10	19.66	14.17
25	26.18	18.01
50	29.58 See 1	19.82 See 36
100	35.02	21.77

Note: Pond to be expanded when Hyatt develops.

AS-BUILT

Spillway		Q ₁₀₀	=CLH ^{3/2}	
Q ₁₀₀ =35.09 C=3	3.0	L=40	M=0.44	
Spillway Invert		8	88.00	∥՝ Դ
100 Year Weir Flow	(8	88.44	
Top of Dike Elevation	لح	- 8	89.00	
Freeboard			0.56	
Spillway Side Slope	(3:1	
Velocity	Y		1.99	
		7		- -
		Y		\sim
		~	\sim	

Water Quality Volume

Q_{wqv} =

0.037 cfs

Project:	The Fields of Liberty	Designed By:	BJS	Date:	9/13/16
Job No.:	15M040-000	Checked By:		Date:	
Basin ID:	Access Drive Pond	Revised By:	MJL	Date:	8/21/17
					ASB

Required Water Quality Volume

$WQ_v = P C A/12$

bayer becker

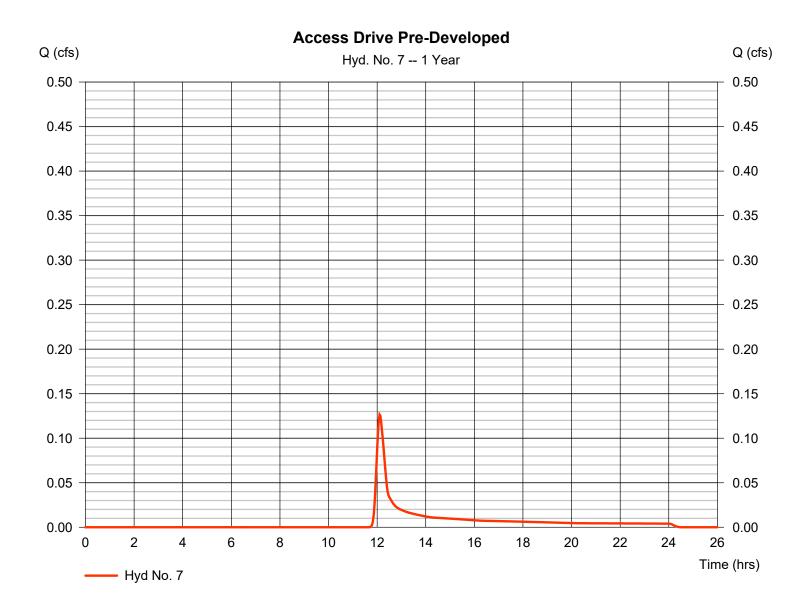
Site Drainage Area (A) =	2.37 acres	(To Basin)	$WQ_v =$	0.098 acre-ft.
Rainfall Depth (P) =	0.75 in.	Wet Pond Allowance =	—	0.75
		Wet Pond Allowance =		0.07 Ac-ft
Runoff Coefficient (C) =	0.66		Total WQ _v =	0.073 Ac-ft
C = 0.858i3 - 0.78i2 + 0.774i + 0.04 (85)	% impervious)		=	3,193 cu.ft.
Water Quality Releas Q _{wqv} = Total WQ _v /R				

Required Retention Time (RT)	24 hours

Provided Retention Time (PT) 23.29 hours

Water Quality Outlet Orifice

Contour Areas

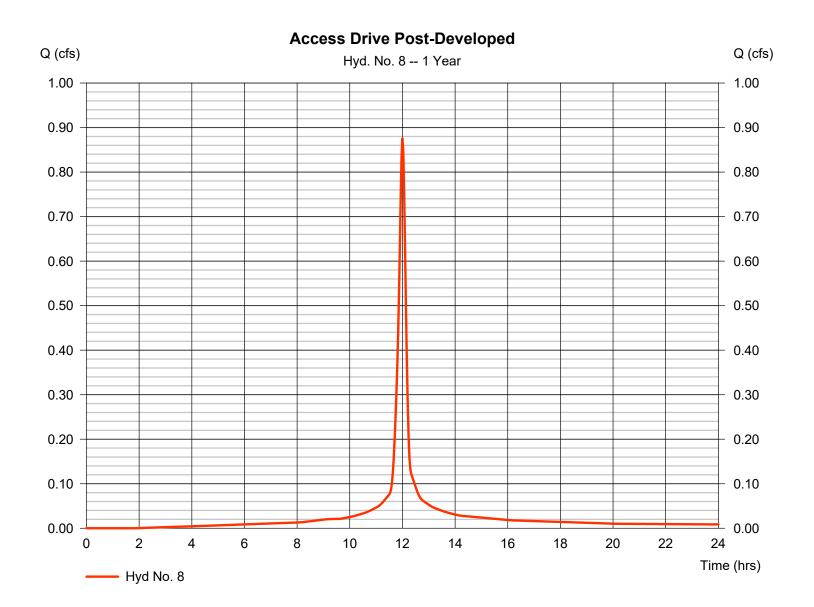

		Elevation	Area	Volume	Cum. Vol.	Elevation	Storage
		ft	ft ²		1 Hora	at V	at Elev
	Basin Inv. =	875.00			0.00	5	
	Contour 1 =	876.00	2,128				
	Contour 2 =	877.00	2,789		3522.50	876.87	
	Contour 3 =	878.00	3,537		6685.50	γ	
	Contour 4 =	879.00	4,364		0 10636.00	\cdot	
	Contour 5 =	880.00	5,25	4811.0	0 15447.00		
	Contour 5 =	881.00	5,500		0 20826.00		
	Contour 5 =	882.00	5,93	i) 5715.5	0.00		
	Contour 5 =	883.00	7,35		6643.00	882.48	3193.05
	Contour 5 =	884.00	8,750		0 14695.50		
	Contour 5 =	885.00	(10,293	3) 9521.5	0 24217.00		
	Contour 5 =	886.00	11,998	3 🖌 11145.5	0 35362.50		
	Contour 5 =	887.00	13,82		48272.00		
	Contour 5 =	888.00	(16,600) 15210.5	63482.50		
	Contour 5 =		Ľ	T			
$Q = N C_d A_o (2 g \Delta)$	h) ^{1/2}						
	C _d =	0.61					
	A _o =	0.02 π	D ² /4 for circ	ular orifices; =	h * w for rectangu	lar orifices	
	g =	32.20 ft	/sec ²				
	Q =	0.042 ct					
Orifice h =	2.000 Nu	_inch O mber of orifice	vrifice w = es = N =	0.0	0 inch (= 0 for circ	cular orifice)	
Δh_{avg} = (Elev at V	- Basin Inv)/2	- 1/2 h =		0.1	6 ft		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 7

Access Drive Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.126 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 502 cuft
Drainage area	= 0.340 ac	Curve number	= 72.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


26

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 8

Access Drive Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 0.877 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 2,511 cuft
Drainage area	= 0.340 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Pond No. 1 - Hyatt House Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 881.96 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	881.96	5,931	0	
1.04	883.00	7,355	6,895	6,895
2.04	884.00	8,750	8,042	14,936
3.04	885.00	10,293	9,510	24,446
4.04	886.00	11,998	11,134	35,580
5.04	887.00	13,821	12,897	48,477
6.04	888.00	16,600	15,188	63,665

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	Inactive	30.00	0.00	Crest Len (ft)	= 8.00	40.00	0.00	0.00
Span (in)	= 24.00	2.00	30.00	0.00	Crest El. (ft)	= 886.86 (887.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 881.96	881.96	883.46	0.00	Weir Type	= 1	Broad		
Length (ft)	= 32.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.09	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

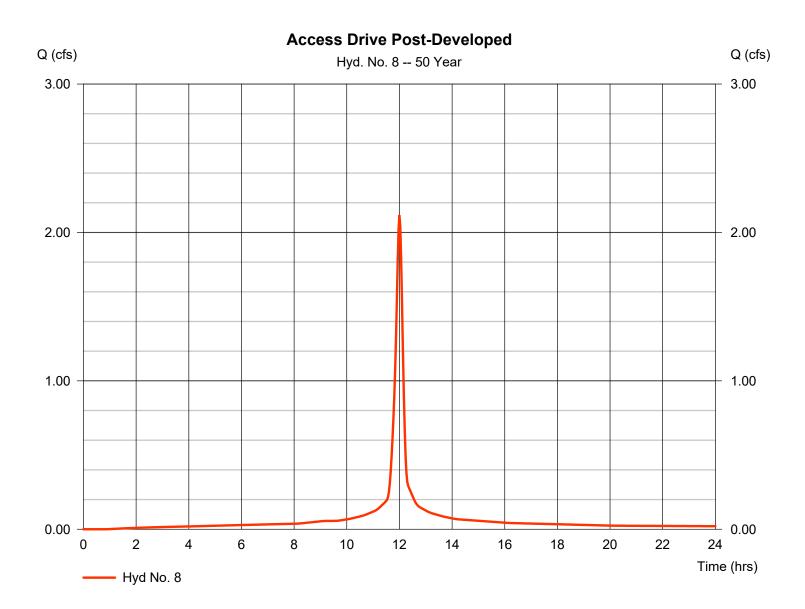
Stage ft 0.00 0.10 0.21 0.31	Storage cuft 0 689 1,379	Elevation ft 881.96 882.06	Clv A cfs 0.00	Clv B cfs	Clv C cfs	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
0.10 0.21 0.31	0 689 1,379					cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.10 0.21 0.31	689 1,379		0.00										
0.21 0.31	1,379	882.06		0.00	0.00		0.00	0.00					0.000
0.31			0.00	0.00	0.00		0.00	0.00					0.000
		882.17	0.00	0.00	0.00		0.00	0.00					0.000
	2,068	882.27	0.00	0.00	0.00		0.00	0.00					0.000
0.42	2,758	882.38	0.00	0.00	0.00		0.00	0.00					0.000
0.52	3,447	882.48	0.00	0.00	0.00		0.00	0.00					0.000
0.62	4,137	882.58	0.00	0.00	0.00		0.00	0.00					0.000
0.73	4,826	882.69	0.00	0.00	0.00		0.00	0.00					0.000
0.83	5,516	882.79	0.00	0.00	0.00		0.00	0.00					0.000
0.94	6,205	882.90	0.00	0.00	0.00		0.00	0.00					0.000
1.04	6,895	883.00	0.00	0.00	0.00		0.00	0.00					0.000
1.14	7,699	883.10	0.00	0.00	0.00		0.00	0.00					0.000
1.24	8,503	883.20	0.00	0.00	0.00		0.00	0.00					0.000
1.34	9,307	883.30	0.00	0.00	0.00		0.00	0.00					0.000
1.44	10,111	883.40	0.00	0.00	0.00		0.00	0.00					0.000
1.54	10,916	883.50	0.01 ic	0.00	0.01 ic		0.00	0.00					0.013
1.64	11,720	883.60	0.15 ic	0.00	0.15 ic		0.00	0.00					0.146
1.74	12,524	883.70	0.44 ic	0.00	0.43 ic		0.00	0.00					0.427
1.84	13,328	883.80	0.84 ic	0.00	0.84 ic		0.00	0.00					0.837
1.94	14,132	883.90	1.41 ic	0.00	1.37 ic		0.00	0.00					1.371
2.04	14,936	884.00	1.99 ic	0.00	1.99 ic		0.00	0.00					1.990
2.14	15,887	884.10	2.81 ic	0.00	2.75 ic		0.00	0.00					2.749
2.24	16,838	884.20	3.65 ic	0.00	3.65 ic		0.00	0.00					3.651
2.34	17,789	884.30	4.58 ic	0.00	4.56 ic		0.00	0.00					4.556
2.44	18,740	884.40	5.76 oc	0.00	5.72 ic		0.00	0.00					5.715
2.54	19,691	884.50	6.89 oc	0.00	6.83 ic		0.00	0.00					6.831
2.64	20,642	884.60	8.05 oc	0.00	8.03 ic		0.00	0.00					8.031
2.74	21,593	884.70	9.36 oc	0.00	9.30 ic		0.00	0.00					9.305
2.84	22,544	884.80	10.65 oc	0.00	10.64 ic		0.00	0.00					10.64
2.94	23,495	884.90	12.02 oc	0.00	12.02 ic		0.00	0.00					12.02
3.04	24,446	885.00	13.42 oc	0.00	13.42 ic		0.00	0.00					13.42
3.14	25,560	885.10	15.01 oc	0.00	15.01 ic		0.00	0.00					15.01
3.24	26,673	885.20	16.01 oc	0.00	16.01 ic		0.00	0.00					16.01
3.34	27,786	885.30	17.04 oc	0.00	17.04 ic		0.00	0.00					17.04
3.44	28,900	885.40	17.98 oc	0.00	17.98 ic		0.00	0.00					17.98
3.54	30,013	885.50	18.86 oc	0.00	18.86 ic		0.00	0.00					18.86

28

Weir Structures

Hyatt House Pond Stage / Storage / Discharge Table

0	0	0											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.64	31,127	885.60	19.70 oc	0.00	19.70 ic		0.00	0.00					19.70
3.74	32,240	885.70	20.49 oc	0.00	20.49 ic		0.00	0.00					20.49
3.84	33,353	885.80	21.21 oc	0.00	21.21 ic		0.00	0.00					21.21
3.94	34,467	885.90	21.81 ic	0.00	21.81 ic		0.00	0.00					21.81
4.04	35,580	886.00	22.21 ic	0.00	22.21 ic		0.00	0.00					22.21
4.14	36,870	886.10	22.57 ic	0.00	22.57 ic		0.00	0.00					22.57
4.24	38,160	886.20	22.93 ic	0.00	22.93 ic		0.00	0.00					22.93
4.34	39,449	886.30	23.28 ic	0.00	23.28 ic		0.00	0.00					23.28
4.44	40,739	886.40	23.63 ic	0.00	23.63 ic		0.00	0.00					23.63
4.54	42,029	886.50	23.97 ic	0.00	23.97 ic		0.00	0.00					23.97
4.64	43,319	886.60	24.30 ic	0.00	24.30 ic		0.00	0.00					24.30
4.74	44,608	886.70	24.64 ic	0.00	24.63 ic		0.00	0.00					24.63
4.84	45,898	886.80	24.96 ic	0.00	24.96 ic		0.00	0.00					24.96
4.94	47,188	886.90	25.35 ic	0.00	25.14 ic		0.21	0.00					25.35
5.04	48,477	887.00	26.00 ic	0.00	24.61 ic		1.40	0.00					26.00
5.14	49,996	887.10	26.79 ic	0.00	23.66 ic		3.13	3.29					30.08
5.24	51,515	887.20	27.66 ic	0.00	22.37 ic		5.28	9.30					36.96
5.34	53,034	887.30	28.56 ic	0.00	20.79 ic		7.77	17.08					45.64
5.44	54,553	887.40	29.48 ic	0.00	18.91 ic		10.57	26.30					55.78
5.54	56,071	887.50	30.31 ic	0.00	17.09 ic		13.22 s	36.76					67.07
5.64	57,590	887.60	30.97 ic	0.00	15.79 ic		15.18 s	48.32					79.30
5.74	59,109	887.70	31.56 ic	0.00	14.68 ic		16.87 s	60.89					92.44
5.84	60,628	887.80	32.10 ic	0.00	13.71 ic		18.38 s	74.39					106.48
5.94	62,146	887.90	32.59 ic	0.00	12.85 ic		19.74 s	88.76					121.35
6.04	63,665	888.00	33.06 ic	0.00	12.07 ic		20.99 s	104.00					137.06

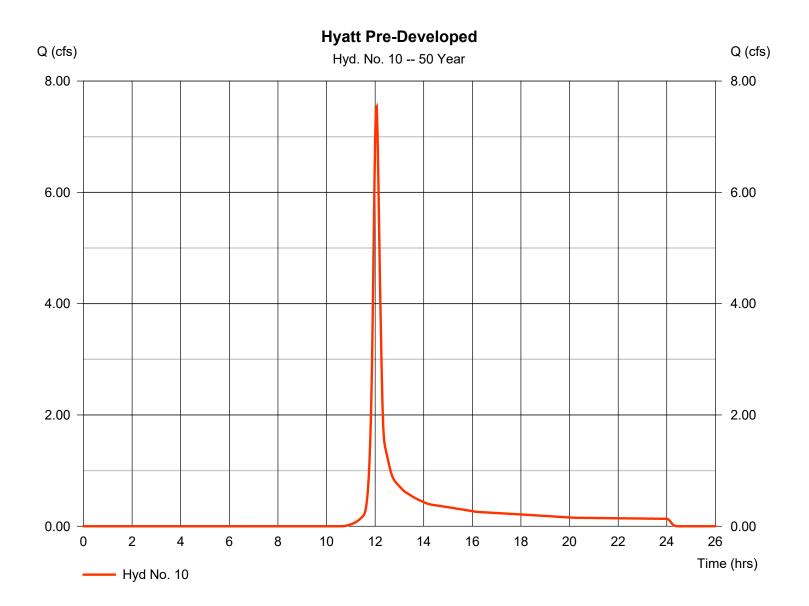

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 8

Access Drive Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 2.117 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 6,317 cuft
Drainage area	= 0.340 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

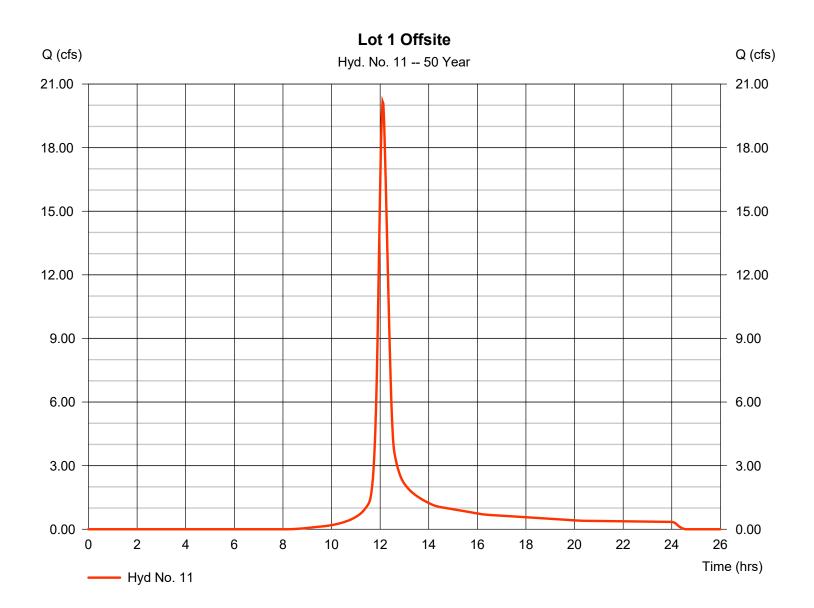


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 10

Hyatt Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 7.535 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 21,896 cuft
Drainage area	= 3.460 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.50 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

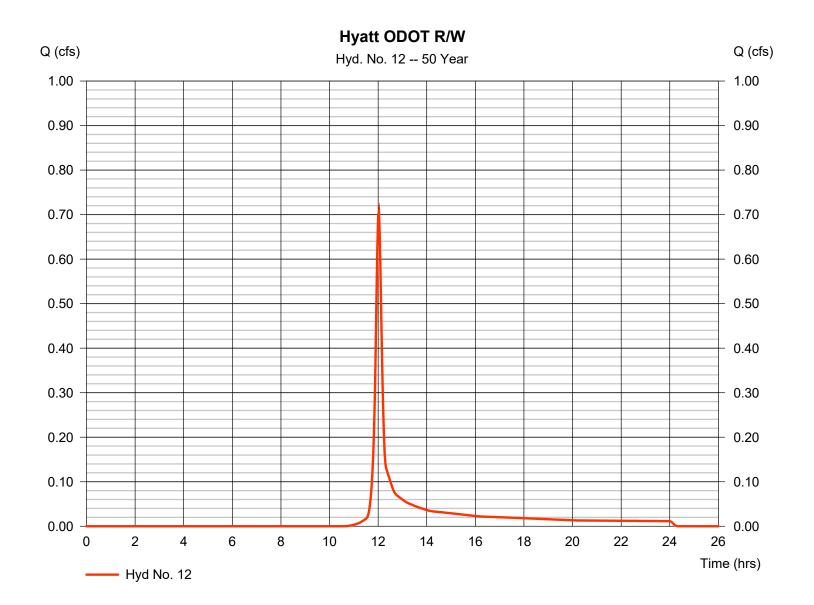

32

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 11

Lot 1 Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 20.18 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 69,864 cuft
Drainage area	= 7.000 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 23.25 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

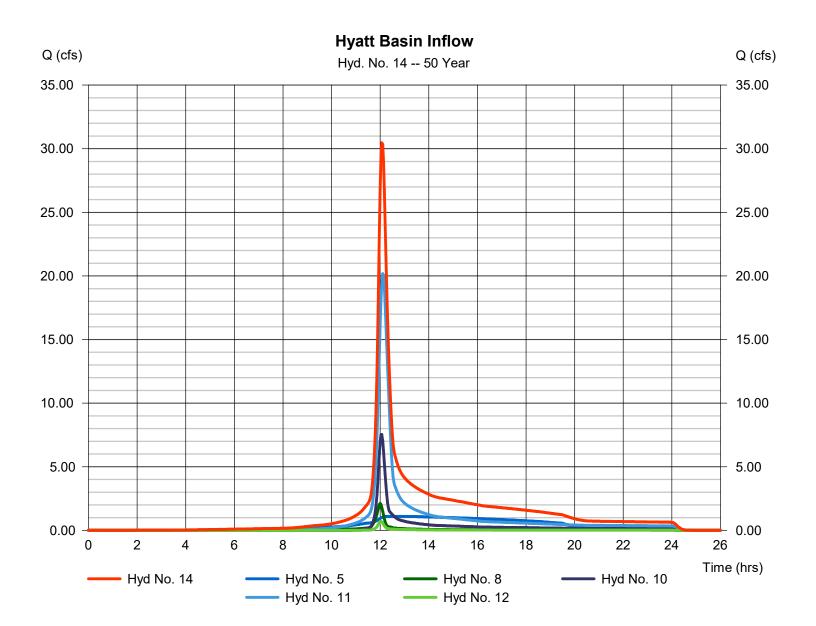


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 12

Hyatt ODOT R/W

Hydrograph type	= SCS Runoff	Peak discharge	= 0.706 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 1,874 cuft
Drainage area	= 0.280 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

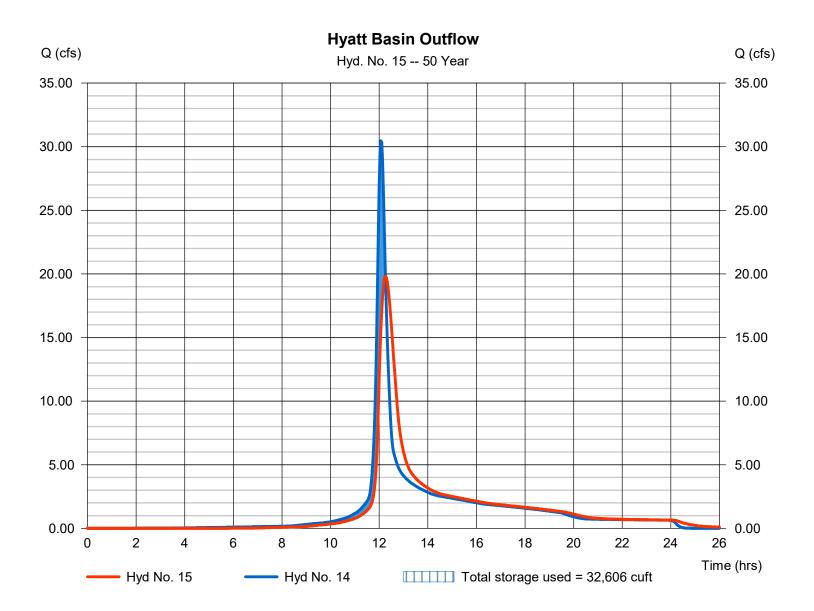


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No. 14

Hyatt Basin Inflow

Hydrograph type	= Combine	Peak discharge	= 30.47 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 133,246 cuft
Inflow hyds.	= 5, 8, 10, 11, 12	Contrib. drain. area	= 11.080 ac

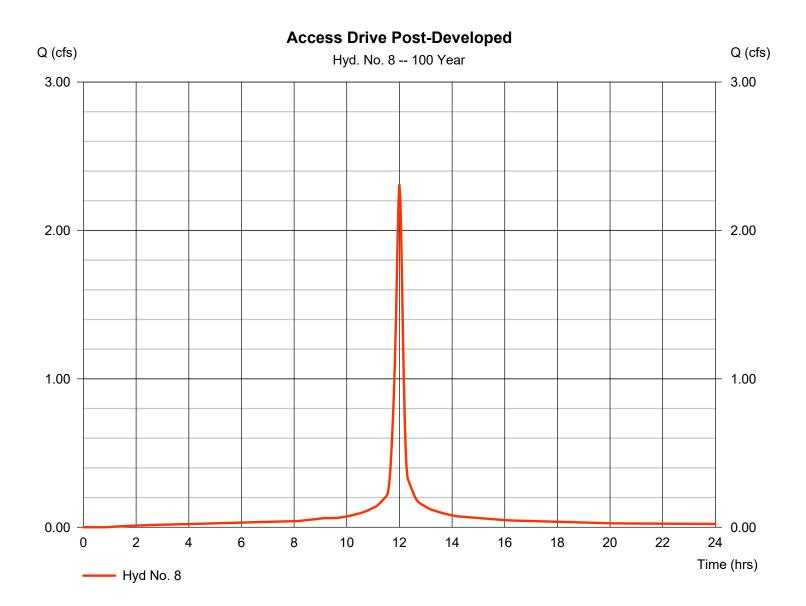

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No. 15

Hyatt Basin Outflow

Hydrograph type	= Reservoir	Peak discharge	= 19.82 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 133,186 cuft
Inflow hyd. No.	= 14 - Hyatt Basin Inflow	Max. Elevation	= 885.74 ft
Reservoir name	= Hyatt House Pond	Max. Storage	= 32,606 cuft

Storage Indication method used. Wet pond routing start elevation = 883.40 ft.

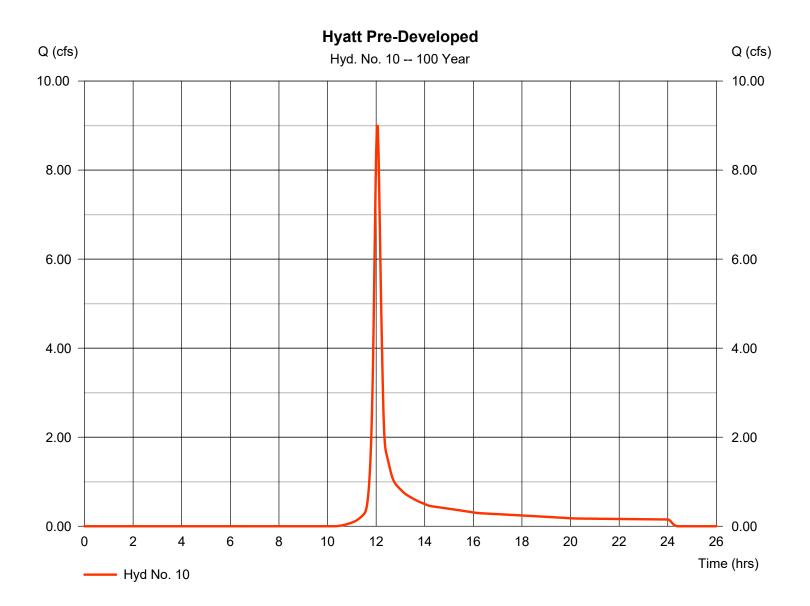


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 8

Access Drive Post-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 2.310 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 6,914 cuft
Drainage area	= 0.340 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

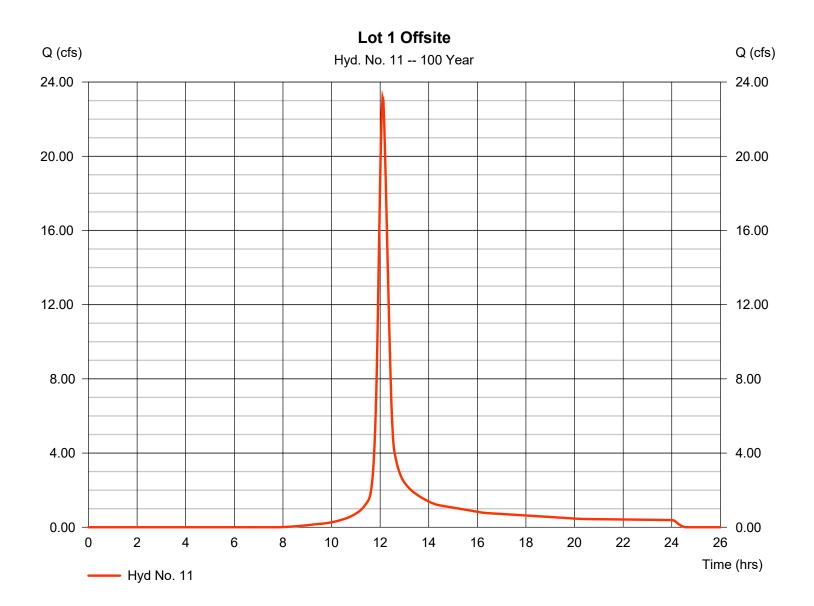


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 10

Hyatt Pre-Developed

Hydrograph type	= SCS Runoff	Peak discharge	= 8.994 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 25,892 cuft
Drainage area	= 3.460 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.50 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

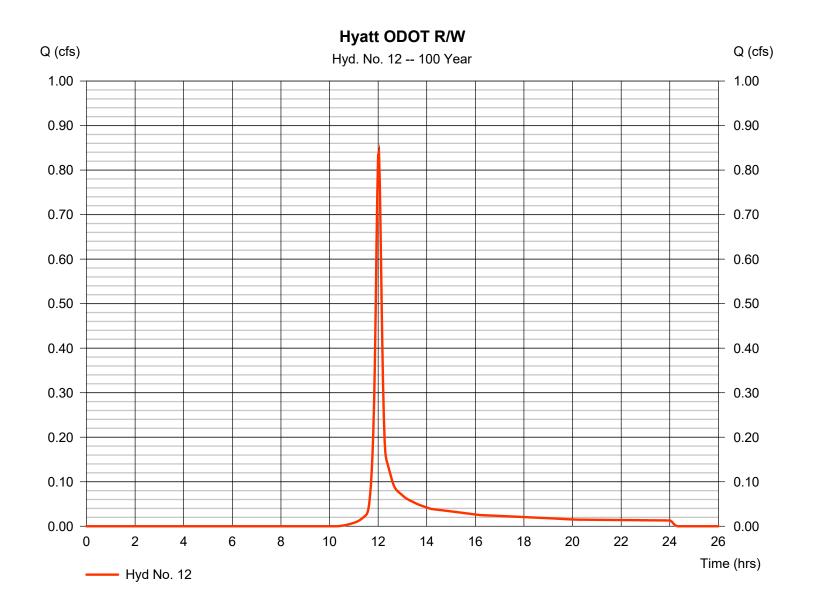


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 11

Lot 1 Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 23.18 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 80,105 cuft
Drainage area	= 7.000 ac	Curve number	= 76
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 23.25 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

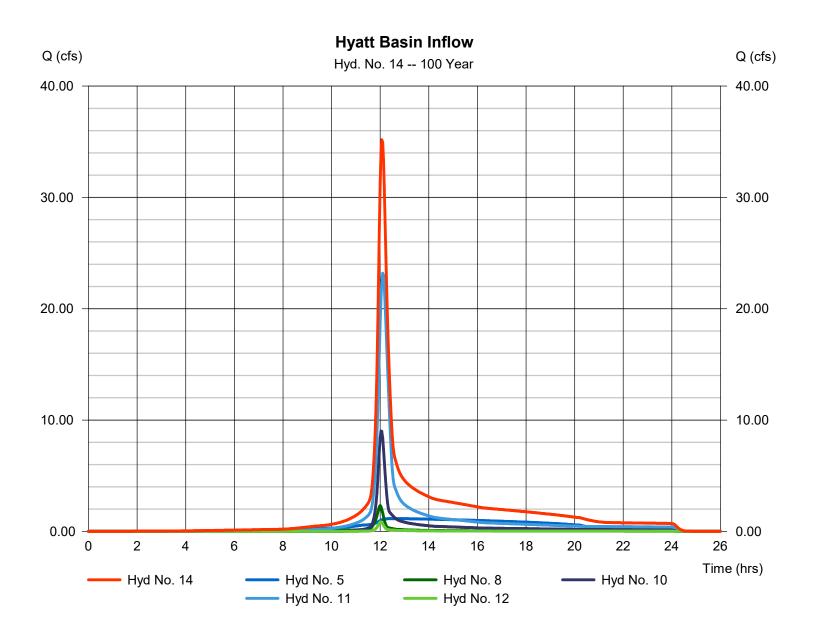


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 12

Hyatt ODOT R/W

Hydrograph type	= SCS Runoff	Peak discharge	= 0.841 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 2,216 cuft
Drainage area	= 0.280 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		•	

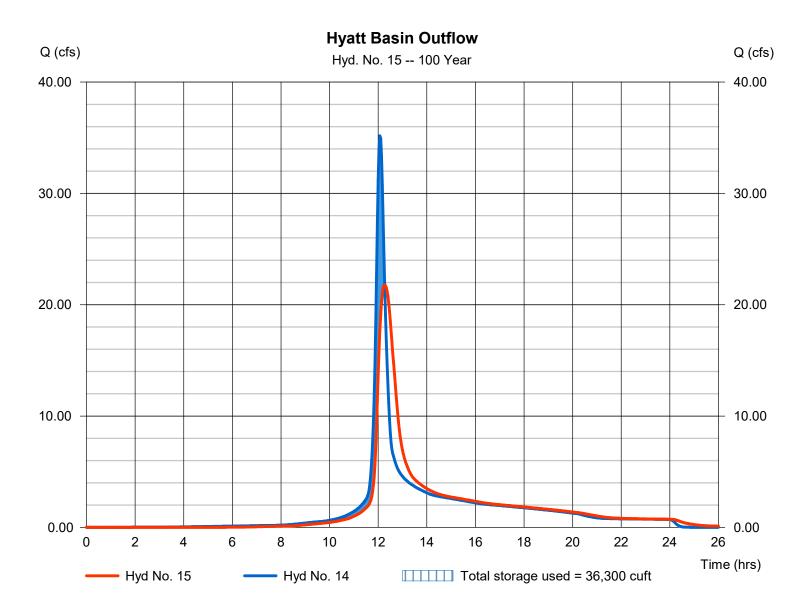


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No. 14

Hyatt Basin Inflow

Hydrograph type	= Combine	Peak discharge	= 35.18 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 152,058 cuft
Inflow hyds.	= 5, 8, 10, 11, 12	Contrib. drain. area	= 11.080 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No. 15

Hyatt Basin Outflow

Hydrograph type	= Reservoir	Peak discharge	= 21.77 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 151,997 cuft
Inflow hyd. No.	= 14 - Hyatt Basin Inflow	Max. Elevation	= 886.06 ft
Reservoir name	= Hyatt House Pond	Max. Storage	= 36,300 cuft

Storage Indication method used. Wet pond routing start elevation = 883.40 ft.

Tuesday, 08 / 22 / 2017

bayer bečker

Detention Volume

Project:	The Fields of Liberty	Designed By:	BJS	Date:	9/13/16
Job No.:	15M040-000	Checked By:		Date:	
Basin ID:	HIX Pond	Revised By:	MJL	Date:	8/21/17
		_		-	ASB

Detention Basin Storage

Contour Areas

	Elevation ft	Basin Area ft ²	Pipe Area	Total Area	Volume ft ³	Cum. Vol. ft ³	
Basin Inv. =	887.06	0	0	0	0.00	0.00	
Contour 1 =	888.00	0	0	0	0.00	0.00	
Contour 2 =	889.00	300	848	1,148	574.00	574.00	
Contour 3 =	890.00	749	1,124	1,873	1510.50	2084.50	
Contour 4 =	891.00	1,230	1,210	2,440	2156.50	4241.00	
Contour 5 =	892.00	1,747	1,157	2,904	2672.00	6913.00	
Contour 6 =	893.00	2,371	943	3,314	3109.17	10022.17	
Contour 7 =	894.00	3,073	339	3,412	3363.17	13385.34	
Contour 8 =	895.00	4,004		4,004	3708.00	17093.34	
Contour 9 =	896.00	5,676		5,676	4840.00	21933.34	
Contour 10 =							
Contour 11 =							
Contour 12 =							
Contour 13 =							
Contour 14 =							